7,698 research outputs found

    Comparative energetic assessment of methanol production from COâ‚‚: chemical versus electrochemical process

    Get PDF
    Emerging emission-to-liquid (eTL) technologies that produce liquid fuels from COâ‚‚ are a possible solution for both the global issues of greenhouse gas emissions and fossil fuel depletion. Among those technologies, COâ‚‚ hydrogenation and high-temperature COâ‚‚ electrolysis are two promising options suitable for large-scale applications. In this study, two COâ‚‚ -to-methanol conversion processes, i.e., production of methanol by COâ‚‚ hydrogenation and production of methanol based on high-temperature COâ‚‚ electrolysis, are simulated using Aspen HYSYS. With Aspen Energy Analyzer, heat exchanger networks are optimized and minimal energy requirements are determined for the two different processes. The two processes are compared in terms of energy requirement and climate impact. It is found that the methanol production based on COâ‚‚ electrolysis has an energy efficiency of 41%, almost double that of the COâ‚‚ hydrogenation process provided that the required hydrogen is sourced from water electrolysis. The hydrogenation process produces more COâ‚‚ when fossil fuel energy sources are used, but can result in more negative COâ‚‚ emissions with renewable energies. The study reveals that both of the eTL processes can outperform the conventional fossil-fuel-based methanol production process in climate impacts as long as the renewable energy sources are implemented

    A high specific capacity membraneless aluminum-air cell operated with an inorganic/organic hybrid electrolyte

    Get PDF
    Aluminum-air cells have attracted a lot of interests because they have the highest volumetric capacity density in theory among the different metal-air systems. To overcome the self-discharge issue of aluminum, a microfluidic aluminum-air cell working with KOH methanol-based anolyte was developed in this work. A specific capacity up to 2507 mAh g¯¹ (that is, 84.1% of the theoretical value) was achieved experimentally. The KOH concentration and water content in the methanol-based anolyte were found to have direct influence on the cell performance. A possible mechanism of the aluminum reactions in KOH methanol-based electrolyte was proposed to explain the observed phenomenon

    An isogeometric analysis for elliptic homogenization problems

    Full text link
    A novel and efficient approach which is based on the framework of isogeometric analysis for elliptic homogenization problems is proposed. These problems possess highly oscillating coefficients leading to extremely high computational expenses while using traditional finite element methods. The isogeometric analysis heterogeneous multiscale method (IGA-HMM) investigated in this paper is regarded as an alternative approach to the standard Finite Element Heterogeneous Multiscale Method (FE-HMM) which is currently an effective framework to solve these problems. The method utilizes non-uniform rational B-splines (NURBS) in both macro and micro levels instead of standard Lagrange basis. Beside the ability to describe exactly the geometry, it tremendously facilitates high-order macroscopic/microscopic discretizations thanks to the flexibility of refinement and degree elevation with an arbitrary continuity level provided by NURBS basis functions. A priori error estimates of the discretization error coming from macro and micro meshes and optimal micro refinement strategies for macro/micro NURBS basis functions of arbitrary orders are derived. Numerical results show the excellent performance of the proposed method

    Lepton flavor violating Higgs boson decays in seesaw models: new discussions

    Full text link
    The lepton flavor violating decay of the Standard Model-like Higgs boson (LFVHD), h->\mu\tau, is discussed in seesaw models at the one-loop level. Based on particular analytic expressions of Passarino-Veltman functions, the two unitary and 't Hooft Feynman gauges are used to compute the branching ratio of LFVHD and compare with results reported recently. In the minimal seesaw (MSS) model, the branching ratio was investigated in the whole valid range 10^{-9}-10^{15} GeV of new neutrino mass scale m_{n_6}. Using the Casas-Ibarra parameterization, this branching ratio enhances with large and increasing m_{n_6}. But the maximal value can reach only order of 10^{-11}. Interesting relations of LFVHD predicted by the MSS and inverse seesaw (ISS) model are discussed. The ratio between two LFVHD branching ratios predicted by the ISS and MSS is simply m^2_{n_6}\mu^{-2}_X, where \mu_X is the small neutrino mass scale in the ISS. The consistence between different calculations is shown precisely from analytical approach.Comment: 4 figures, 26 pages, some analytic formulas and statements are corrected. Main results are unchanged. New references added. Version published in NP
    • …
    corecore