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Abstract: In this paper, we successfully extended eXtended IsoGeometric Analysis (XIGA) in simulation 
of stationary and propagating cracks. In this method, IsoGeometric Analysis (IGA) utilizing the Non-Uniform 
Rational B-Spline (NURBS) functions is incorporated with enrichment functions through the partition of 
unity. The Heaviside function is enriched to capture the discontinuous phenomenon at the crack faces while 
the asymptotic functions from analytical solution are incorporated with NURBS to perform the singular field 
at the crack tips. Based on the NURBS’s characteristics, this approach allows us to achieve easily the 
higher approximation order and continuity of the basic functions. As a result, XIGA can improve accuracy 
and higher convergence rate as compared with traditional finite element. 
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1 INTRODUCTION 

In service, the cracks generated and grown from the defects under a cyclic loading cause a reduction of the 
load carrying capacity of the structures. Therefore, study of fracture mechanics is virtually important in 
guarantee of the performance and safety of the structures. The prediction and analysis of the crack 
problems are the attractive topics for many scientists in general and for computational experts in particular. 
As a result, a numerous numerical methods have been developed including finite element method (FEM) 
[1], boundary method [2], meshfree method [3], extended finite element method (XFEM) [4], etc. In these 
methods, approximated geometries introduce some error in the solutions because different shape functions 
are utilized in describing geometry and analysis. To overcome this issue, Hughes et al. proposed 
isogeometric analysis (IGA) [5] which fulfils a seamless bridge link between computer aided design and 
finite element analysis based on using the same B-Spline or non-uniform rational B-Spline (NURBS) 
functions in describing the exact geometry of problem as well as constructing finite approximation for 
analysis. IGA provides a flexible way to make refinement and degree evaluation. It allows us to achieve 
easily the higher approximation order and continuity of the basic functions as compared with the traditional 
finite element method. Up-to-now, IGA has been extensively and successfully studied for various fields of 
engineering and science, including fracture mechanics. For the crack problems, the enrichment functions 
through the partition of unity method are incorporated into IGA to capture the discontinuous phenomenon at 
the crack faces and singular filed at the crack tips. Recently, De Luycker et al. [6] has been used XFEM 
incorporated with IGA for linear fracture of mode I crack. He found that this method gains the greater 
accuracy and convergence rate. Then, Gorashi et al. [7] kept developing this approach (in short name 
XIGA) to perform the behaviour of the crack structures in 2D. XIGA also successfully applied in bi-material 
body with curved interface [8], assessment of collapse load of cracked plate [9], vibration of crack plate 
[10], cracked thin shell structures [11]. 

In this paper, we extended XIGA for simulation of stationary and propagating cracks. In this method, the  
Heaviside function is utilized for model the discontinuous phenomenon at the crack face while the 
asymptotic functions from analytical solution is used to capture the singular fields at the crack tips. Based 
on the NURBS, this approach allows us to achieve easily the higher approximation order and continuity of 
basic functions. As a result, XIGA can improve accuracy and higher convergence rate as compared with 
XFEM.  
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2 GOVERNING EQUATIONS OF CRACKED STRUCTURE 

Consider a linear elastic solid defined in a domain Ω with a boundary Γ  such that ,t cΓ = Γ ∪ Γ ∪ Γu  

t cΓ ∩ Γ ∩ Γ = ∅u where , ,t cΓ Γ Γu are the Dirichlet and Neumann boundary and crack surfaces, respectively. 

The body subjected to body forces b  and to surface tractions t  on the free portion tΓ . The governing 

equations for this problem are 
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in which u  is the displacement field which satisfies the compatibility relation 

s= ∇ε u  in Ω      where 
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and the Cauchy stress tensor σ is obtained from the constitutive relation based on Hooke’s law 

=σ Dε  in Ω       (3) 

where D  is the elastic constant matrix. 

The weak form of the equilibrium equations can be expressed as 

d d d
t

T

Ω Ω Γ
Ω = Ω + Γ∫ ∫ ∫D bu tuε ε  (4) 

3 DISCRETIZATION 

3.1 A brief of B-spline/NURBS functions 

A knot vector { }1 2 1, ,..., n pξ ξ ξ + +=Ξ is a non-decreasing sequence of parameter values iξ , 1,...i n p= + , where 

i Rξ ∈  called ith knot lies in the parametric space, p  is the order of the B-spline and n  is number of the 

basis functions. Using Cox-de Boor algorithm, the univariate B-spline basis functions are defined 

recursively start with order 0p =   
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as 1p ≥ the basis functions are obtained from 
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The multivariate B-spline basis functions are generated by a simple way - tensor product of the univariate 

B-splines 

( ) ( ),
1

d

A i pN N
α α

α

α =

= ∏ξ ξ      (7) 

where 1, 2, 3d =  is  dimensional space. Fig. 1 illustrates an example of bivariate B-spline basis function 

from tensor product of two univariate B-splines { }1 1 3

4 2 4
0,0,0,0, , , ,1,1,1,1=ψ  and { }1 2 3 3 4

5 5 5 5 5
0,0,0, , , , , ,1,1,1=Ξ  in 

ξ  and η direction, respectively.  
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To present exactly some conic sections, e.g., circles, cylinders, spheres, etc., non-uniform rational B-

splines (NURBS) with an additional weight value 0Aζ > for each control point is used.  

( ) ( ), / ,
m n

A A A A A
A

R N Nξ η ζ ξ η ζ
×

= ∑   (8) 

3.2 Extended isogeometric finite element method 
In order to capture the local discontinuous and singular fields, the enriched displacement approximation is 
introduced according to idea of XFEM as follow: 

( ) ( ) ( )
enr

h std enr enr
I I J J

I S J S

R R
∈ ∈

= +∑ ∑u x ξ q ξ q   (9) 

Here, the NURBS basis functions are utilized instead of the Lagrange polynomials to create a new 
numerical procedure – so-called eXtended IsoGeometric Analysis (XIGA) [7]. enr

JR are the enrichment 

functions associated with node J located in enriched domain enrS  which is splitted up two parts including: a 
set Sc for crack faces enriched control points and a set Sf for crack tips enriched control points as shown in 
Fig. 2. 
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Fig. 2 Illustration of the nodal sets Sc, Sf for a quadratic NURBS mesh. 

To model the discontinuous displacement at crack faces, the Heaviside function, which otherwise becomes 
+1 if physical coordinate is above the crack and -1, is incorporated in the enriched functions: 

( )( ) ( ) ( ) ( )enr
J J JR R H H= −ξ ξ x x   (10) 

 

Fig. 1 B-splines basic functions. 

 

Control point of set Sc 

Control point of set Sf 
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The analytical displacement field of linear elastic fracture problem at crack tips in polar coordinate ( , )r θ  is 
expressed as below [12]: 

( )
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where IK  and IIK are the stress intensity factors of mode I and mode II, respectively.  

From the analytical displacement, the enriched functions for crack tips are chosen as [13]: 
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3.3 Discretization 
Now, substituting Eq. (9) into Eq. (2), the strain can be expressed follow the nodal displacement as 

1

m n
T

I I
I

×

=

=∑B qε  (14) 

where the strain matrix B  is given by 

std enr
I I I

 
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in which stdB  and enrB are the standard and enriched part of matrix B  defined in the following form 
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where R  can be either the NURBS basic functions ( )R ξ or enriched functions enrR . 

Substituting Eq.(14) into Eq.(4), the linear static equation for crack problem is obtained 

Kq = F  (17) 

with the global stiffness and force vector 

d and d d
t

T R R
Ω Ω Γ

= Ω = Ω + Γ∫ ∫ ∫K DB F b tΒ  (18) 

4 NUMERICAL RESULTS 

In this section, we study linear elastic fracture mechanics in some numerical examples with rectangular 
geometry such as: an infinite plate under in-plane tension, the static crack and crack propagation of an 
edge cracked plate subjected to shear stress. In all numerical examples, plane strain state is assumed. 
Herein, we illustrated the present method using meshing of cubic elements.  
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4.1 An infinite plate subjected to tension 
Firstly, let us consider an isotropic infinite plate with material parameters of E = 107 N/mm2, ν = 0.3 
containing a centre crack of length 2a subjected to a remote 
uniform stress σ = 102 N/mm2. A unit shaded domain, as 
shown in Fig. 3, with crack length of 0.5 mm is modelled. To 
evaluate the present method, Fig. 4 reveals the comparison 
between XFEM and XIGA in investigation of the relative 
error and convergence rate of displacement and energy 
which are given by 

( ) ( )
1/2

/
Th h Td d

Ω Ω
 = − − Ω Ω  ∫ ∫u u u u u u u  (19) 

( ) ( )
1/ 2

/
Th h Td d

Ω Ω
 = − − Ω Ω  ∫ ∫e ε ε σ σ ε σ  (20) 

It is noted that as p = 1, XIGA formulation is identical to 

XFEM. As compared to XFEM, it is observed that present 
method archives supper accuracy and higher convergence 
rate in displacement error norm as well as energy error 
norm. Fig. 5 displays the contour plots of displacements and 
stress distributions in x and y directions, respectively. 
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Fig. 4 Comparison of relative error norm of: (a) displacement, (b) energy. 

 

    
(a) Displacement xU  (b) Displacement yU  (c) Axial stress xxσ  (d) Axial stress yyσ  

Fig. 5 Contour plot of the displacements and stresses distribution. 

 

 

 

 

 

 

Fig. 3 Infinite crack plate in tension. 
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4.2 An edge cracked plate under shear 
stress 

In next example, we consider a rectangular plate subjected to a 
shear stress τ = 1 N/mm2 as shown in Fig. 6 with material 
parameters of E = 3x107 N/mm2,ν = 0.25. Fig. 7a and b show 
the relations between relative error of stress intensity factor (SIF) 
via number of degrees of freedom (DOFs) and CPU time, 
respectively. It is again seen that present method archives more 
accurate than XFEM. Indeed, to get the accuracy of SIF IK  with 
error lower than 0.1%, XIGA needs approximate 4300 DOFs 
while XFEM uses more than 25000 variables with nearly two 
time computational cost. Fig. 8 plots the distribution of axial 
stress, shear stress and displacement along y direction. For 
comparison purpose of displacement yU , 3D elastic solid is also 

modelled by XIGA with meshing of 13x27x3 elements. The same 
contour plot of displacement is observed in Fig. 8c and d. 
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Fig. 7 Comparison between XIGA and XFEM. 
 

 

Fig. 8 Contour plot of the stresses and displacements: (a) xxσ , (b) xyσ , yU in 2D (c) and 3D (d). 

 

4.3 Crack propagation of an edge cracked plate under mixed mode 
loading 

In this section, we want to show the capacity of present method in crack growth simulation without re-
meshing. For this problem, two important parameters need to be specified during the crack growth 

 
 

Fig. 6  Edge crack plate under shear 
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procedure: crack growth direction cθ  and incremental crack length a∆ . The crack growth angle can be 
identified follow to several available criteria such as: the critical plane approach, the maximum 
circumferential stress, the maximum energy release rate, the minimum strain energy density (see review in 
[14]). In this present work, we adopt the maximum circumferential stress to evaluate the crack growth 
direction [15] 

( )( )2
2atan 2( / ) / (1 1 8 / )c II I II IK K K Kθ = − + +  (21) 

The incremental crack length is commonly determined from Paris’s law. However, in this example, for 
simple, a constant crack increment length of a∆ = 0.3 mm is set for each step. Fig. 9 shows the meshes at 
the step number #1 and #8 with the axial stress distributions xxσ , respectively. It is observed that, during 
the crack growth, the mesh is unchanged while the position of crack tip downwards as oblique path. It leads 
to change the enrichment status of the control points, for instance, from being tip-enriched to Heaviside 
enriched or some standard control points becomes the enriched ones. 

(a) 
 

 

(b)  
 

 

 
Fig. 9 Propagation of an edge crack under shear stress after step 1 (a) and step 8 (b). 

5 CONCLUSIONS 

In this paper, an eXtended IsoGeometric Analysis (XIGA) is extended to simulate the stationary and 
propagation of the crack problems. Based on idea of XFEM, the enrichment functions through the partition 
of unity method are integrated to capture the local discontinuous and singular fields. The advantage of 
present method is based on the NURBS which allows us to achieve easily the higher approximation and 
continuity in order of basic functions as compared with the traditional FEM. As a results, XIGA gains better 
accuracy and higher convergence rate than XFEM. Furthermore, the stresses and displacement are also 
plotted smoothly and continuous through the element boundaries.  
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