30 research outputs found

    OmniMotionGPT: Animal Motion Generation with Limited Data

    Full text link
    Our paper aims to generate diverse and realistic animal motion sequences from textual descriptions, without a large-scale animal text-motion dataset. While the task of text-driven human motion synthesis is already extensively studied and benchmarked, it remains challenging to transfer this success to other skeleton structures with limited data. In this work, we design a model architecture that imitates Generative Pretraining Transformer (GPT), utilizing prior knowledge learned from human data to the animal domain. We jointly train motion autoencoders for both animal and human motions and at the same time optimize through the similarity scores among human motion encoding, animal motion encoding, and text CLIP embedding. Presenting the first solution to this problem, we are able to generate animal motions with high diversity and fidelity, quantitatively and qualitatively outperforming the results of training human motion generation baselines on animal data. Additionally, we introduce AnimalML3D, the first text-animal motion dataset with 1240 animation sequences spanning 36 different animal identities. We hope this dataset would mediate the data scarcity problem in text-driven animal motion generation, providing a new playground for the research community.Comment: The project page is at https://zshyang.github.io/omgpt-website

    Performance assessment of a membrane liquid desiccant dehumidification cooling system based on experimental investigations

    Get PDF
    A membrane-based liquid desiccant dehumidification cooling system is studied in this paper for energy efficient air conditioning with independent temperature and humidity controls. The system mainly consists of a dehumidifier, a regenerator, an evaporative cooler and an air-to-air heat exchanger. Its feasibility in the hot and humid region is assessed with calcium chloride solution, and the influences of operating variables on the dehumidifier, regenerator, evaporative cooler and overall system performances are investigated through experimental work. The experimental results indicate that the inlet air condition greatly affects the dehumidification and regeneration performances. The system regeneration temperature should be controlled appropriately for a high energy efficiency based on the operative solution concentration ratio. It is worth noting that the solution concentration ratio plays a considerable role in the system performance. The higher the solution concentration ratio, the better the dehumidification performance. However simultaneously more thermal input power is required for the solution regeneration, and a crystallization risk in the normal operating temperature range should be noted as well. The system mass balance between the dehumidifier and regenerator is crucial for the system steady operation. Under the investigated steady operating condition, the supply air temperature of 20.4°C and system COP of 0.70 are achieved at a solution concentration ratio of 36%

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Identification of critical genes to predict recurrence and death in colon cancer: integrating gene expression and bioinformatics analysis

    No full text
    Abstract Background The purpose of this study was to screen the critical genes for future diagnosis and treatment of colon cancer by bioinformatics method. Methods In this study, we used bioinformatics approaches to identify gene alteration that contribute to colon cancer progression via analysis of TCGA RNA sequencing data and other publicly GEO microarray data. The Random forest survival model was used to screen gene sets related to the prognosis in DEGs. Gene ontology and KEGG pathway enrichment analysis were performed to determine the potential function of DEGs. Results We identified versican (VCAN), a member of the aggrecan/versican proteoglycan family, as a key regulator in human colon cancer development and progression involved in cell adhesion, proliferation, migration and angiogenesis and plays a central role in tissue morphogenesis and maintenance. Interestingly, we found that VCAN is highly over-expressed in colon cancer and increased expression of VCAN was associated with the progression of colon cancer. High VCAN levels also predict shorter overall survival of colon cancer patients. Furthermore, in vitro assays of silencing VCAN inhibit HCT116 cell proliferation and invasion. Conclusions These data demonstrated VCAN were associated with tumorigenesis and may be as biomarker for identification of the pathological grade of colon cancer

    Optimization for Interval Type-2 Polynomial Fuzzy Systems:A Deep Reinforcement Learning Approach

    Get PDF
    It is known that the interval type-2 (IT2) fuzzy controllers are superior compared to their type-1 counterparts in terms of robustness, flexibility, etc. However, how to conduct the type reduction optimally with the consideration of system stability under the fuzzy-model-based (FMB) control framework is still an open problem. To address this issue, we present a new approach through the membership-function-dependent (MFD) and deep reinforcement learning (DRL) approaches. In the proposed approach, the reduction of IT2 membership functions of the fuzzy controller is completing during optimizing the control performance. Another fundamental issue is that the stability conditions must hold subject to different type-reduction methods. It is tedious and impractical to resolve the stability conditions according to different type-reduction methods, which could lead to infinite possibility. It is more practical to guarantee the holding of stability conditions during type-reduction rather than resolving the stability conditions, the MFD approach is proposed with the imperfect premise matching (IPM) concept. Thanks to the unique merit of the MFD approach, the stability conditions according to all the different embedded type-1 membership functions within the footprint of uncertainty (FOU) are guaranteed to be valid. During the control processes, the state transitions associated with properly engineered cost/reward function can be used to approximately calculate the deterministic policy gradient to optimize the acting policy and then to improve the control performance through determining the grade of IT2 membership functions of the fuzzy controller. The detailed simulation example is provided to verify the merits of the proposed approach

    The effect of Chinese herbal medicine <i>Orthosiphon aristatus</i> on water drinking and serum urea content of domestic cat in summer

    No full text
    Domestic cat (Felis silvestris catus) drinks less water and urinates less,and has high incidence of urinary system diseases.Orthosiphon aristatus is a traditional Chinese herbal medicine with very good diuretic effect.In this study,10 domestic cats were used for testing.The results showed that the addition of 1% (mass fraction) O.aristatus can significantly increase the water consumption of domestic cats and reduce their serum urea nitrogen content,but does not affect their body weight and feed intake.This test shows that O.aristatus has potential for increasing urinary output and reducing urinary system diseases of domestic cats

    Whole-Genome Sequencing Analysis of Non-Typhoidal <i>Salmonella</i> Isolated from Breeder Poultry Farm Sources in China, 2020–2021

    No full text
    Non-typhoidal salmonellosis is a dangerous foodborne disease that causes enormous economic loss and threatens public health worldwide. The consumption of food, especially poultry or poultry products, contaminated with non-typhoidal Salmonella (NTS) is the main cause of human salmonellosis. To date, no research has identified the molecular epidemiological characteristics of NTS strains isolated from breeder chicken farms in different provinces of China. In our study, we investigated the antimicrobial resistance, phylogenetic relationships, presence of antimicrobial resistance and virulence genes, and plasmids of NTS isolates recovered from breeder chicken farms in five provinces of China between 2020 and 2021 by using a whole-genome sequencing (WGS) approach and phenotypic methods. All sequenced isolates belonged to six serovars with seven sequence types. Nearly half of the isolates (44.87%) showed phenotypic resistance to at least three classes of antimicrobials. Salmonella enterica serotype Kentucky harbored more antimicrobial resistance genes than the others, which was highly consistent with phenotypic resistance. Furthermore, the carried rate of 104 out of 135 detected virulence genes was 100%. Overall, our WGS results highlight the need for the continuous monitoring of, and additional studies on, the antimicrobial resistance of NTS
    corecore