8,621 research outputs found

    On the turbulent flow models in modelling of omni-flow wind turbine

    Get PDF
    Yong Chen, Pei Ying, Yigeng Xu, Yuan Tian, 'On the turbulent flow models in modelling of omni-flow wind turbine', paper presented at The International Conference on Next Generation Wind Energy (ICNGWE2014), the Universidad Europa de Madrid, Madrid, Spain, 7th-10th October 2014.The computational fluid dynamics (CFD) has a wide application in the wind energy industry. In CFD simulations, a turbulence model plays a significantly important role in accuracy and resource cost. In this paper, a novel wind turbine, omni-flow wind turbine, was investigated with different turbulence models. Four turbulence models, standard k-ε, realizable k-ε, standard k-ω and SST k-ω models, were employed for this wind turbine in order to assess the best numerical configuration. The performance of these four turbulence models was validated with wind tunnel tests. It is evident that the realizable k-ε turbulence model is most suitable to simulate this novel wind turbine

    Ultrafast magnetization enhancement and spin current injection in magnetic multilayers by exciting the nonmagnetic metal

    Full text link
    A systematic investigation of spin injection behavior in Au/FM (FM = Fe and Ni) multilayers is performed using the superdiffusive spin transport theory. By exciting the nonmagnetic layer, the laser-induced hot electrons may transfer spin angular momentum into the adjacent ferromagnetic (FM) metals resulting in ultrafast demagnetization or enhancement. We find that these experimental phenomena sensitively depend on the particular interface reflectivity of hot electrons and may reconcile the different observations in experiment. Stimulated by the ultrafast spin currents carried by the hot electrons, we propose the multilayer structures to generate highly spin polarized currents for development of future ultrafast spintronics devices. The spin polarization of the electric currents carried by the hot electrons can be significantly enhanced by the joint effects of bulk and interfacial spin filtering. Meanwhile the intensity of the generated spin current can be optimized by varying the number of repeated stacking units and the thickness of each metallic layer.Comment: 11 pages, 6 figure

    Evidence of the side jump mechanism in the anomalous Hall effect in paramagnets

    Full text link
    Persistent confusion has existed between the intrinsic (Berry curvature) and the side jump mechanisms of anomalous Hall effect (AHE) in ferromagnets. We provide unambiguous identification of the side jump mechanism, in addition to the skew scattering contribution in epitaxial paramagnetic Ni34_{34}Cu66_{66} thin films, in which the intrinsic contribution is by definition excluded. Furthermore, the temperature dependence of the AHE further reveals that the side jump mechanism is dominated by the elastic scattering

    Computational and Experimental Investigations of an Omni-Flow Wind Turbine

    Get PDF
    This document is the Accepted Manuscript version, made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License CC BY NC-ND 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/ ). The final, definitive version of this paper is available online at doi: https://doi.org/10.1016/j.apenergy.2015.01.067.Both numerical and experimental studies were conducted to evaluate the performance of an omni-flow wind turbine designed to provide renewable electricity on the top of urban buildings like skyscrapers. The numerical approach was based on Finite Volume Method (FVM) and the turbulence flow was studied with several commonly used Reynolds-averaged Navier–Stokes turbulence models. The results of the study were evaluated with the wind tunnel test results over a range of tip speed ratios. The numerical results showed the effect of blade number on both power output and starting capability. Although both the power and torque coefficient were improved significantly by the optimisation of the blade number, there was only a slight change when the blade number was greater than twenty. The results from wind tunnel testing also showed excellent starting capability with a starting wind velocity as low as 1.6 m/s. A numerical simulation was also conducted for the wind turbine working under non-uniform flow conditions. The numerical results have shown that the peak power coefficient of such a wind turbine under non-uniform flow, was lower than that under the uniform flow. Additionally, the applied thrust on a blade was subject to frequent and periodical changes. However, the effect of the change of thrust in magnitude and frequency was not significant. Therefore the omni-flow wind turbine has the potential to meet the challenge of unpredictable wind velocity and direction as a consequence of the urban environment.Peer reviewedFinal Accepted Versio

    Semiquantum private comparison via cavity QED

    Full text link
    In this paper, we design the first semiquantum private comparison (SQPC) protocol which is realized via cavity quantum electrodynamics (QED) by making use of the evolution laws of atom. With the help of a semi-honest third party (TP), the proposed protocol can compare the equality of private inputs from two semiquantum parties who only have limited quantum capabilities. The proposed protocol uses product states as initial quantum resource and employs none of unitary operations, quantum entanglement swapping operation or delay lines. Security proof turns out that it can defeat both the external attack and the internal attack.Comment: 16 pages, 2 figures, 2 table

    Circumferences and minimum degrees in 3-connected claw-free graphs

    Get PDF
    AbstractIn this paper, we prove that every 3-connected claw-free graph G on n vertices contains a cycle of length at least min{n,6δ−15}, thereby generalizing several known results

    Sustained visual attention is more than seeing

    Get PDF
    Sustained visual attention is a well-studied cognitive capacity that is relevant to many developmental outcomes. The development of visual attention is often construed as an increased capacity to exert top-down internal control. We demonstrate that sustained visual attention, measured in terms of momentary eye gaze, emerges from and is tightly tied to sensory-motor coordination. Specifically, we examined whether and how changes in manual behavior alter toddlers’ eye gaze during toy play. We manipulated manual behavior by giving one group of children heavy toys that were hard to pick up and giving another group of children perceptually identical toys that were lighter and easy to pick up and hold. We found a tight temporal coupling of visual attention with the duration of manual activities on the objects, a relation that cannot be explained by interest alone. Toddlers in the heavy-object condition looked at objects as much as toddlers in the light-object condition but did so through many brief glances, whereas looks to the same objects were longer and sustained in the light-object condition. We explain the results based on the mechanism of hand–eye coordination and discuss its implications for the development of visual attention
    • …
    corecore