4,379 research outputs found

    Chinese herbal medicine for infertility with anovulation: a systematic review.

    Get PDF
    published_or_final_versio

    Morphology Analysis and Characteristics Evaluation of Typical Super Abrasive Grits in Micron Scale

    Get PDF
    Distribution characterization of geometry shape and size of abrasive grits with high quality in tight size band and exact pattern is crucial for modern tool manufacturer to make fine powder abrasive tool and other powder tools, but complex to be classified and evaluated accurately due to the lack of scientific method. In contrast to industrial methods with sieving mesh size or simplified projection criteria with circumscribed (inscribed or escribed) circle or rectangle, a set of new systemic criteria is developed and validated by measuring three representative grits samples in micron scale under 2D/3D microscopy platform. The features of micron abrasive grits under morphology classification include total four groups, six subgroups and eighteen sub-types in consideration of spatial geometry and statistical size distribution. For grinding performance analysis and simulation, it would be better to use a set of dominant volumetric geometries rather than use single simple geometry. Furthermore, the significance of abrasive grits geometries in grinding performance is discussed

    Engineering and Tuning of Quantum Emitters in Few-Layer Hexagonal Boron Nitride

    Full text link
    © 2019 American Chemical Society. Quantum technologies require robust and photostable single photon emitters (SPEs). Hexagonal boron nitride (hBN) has recently emerged as a promising candidate to host bright and optically stable SPEs operating at room temperature. However, the emission wavelength of the fluorescent defects in hBN has, to date, been shown to be uncontrolled, with a widespread of zero phonon line (ZPL) energies spanning a broad spectral range (hundreds of nanometers), which hinders the potential development of hBN-based devices and applications. Here we demonstrate chemical vapor deposition growth of large-area, few-layer hBN films that host large quantities of SPEs: -100-200 per 10 × 10 μm 2 . More than 85% of the emitters have a ZPL at (580 ± 10) nm, a distribution that is an order of magnitude narrower than reported previously. Furthermore, we demonstrate tuning of the ZPL wavelength using ionic liquid devices over a spectral range of up to 15 nm-the largest obtained to date from any solid-state SPE. The fabricated devices illustrate the potential of hBN for the development of hybrid quantum nanophotonic and optoelectronic devices based on two-dimensional materials

    Resonant Excitation of Quantum Emitters in Hexagonal Boron Nitride

    Full text link
    © 2017 American Chemical Society. Quantum emitters in layered hexagonal boron nitride (hBN) have recently attracted a great deal of attention as promising single photon sources. In this work, we demonstrate resonant excitation of a single defect center in hBN, one of the most important prerequisites for employment of optical sources in quantum information processing applications. We observe spectral line widths of an hBN emitter narrower than 1 GHz while the emitter experiences spectral diffusion. Temporal photoluminescence measurements reveal an average spectral diffusion time of around 100 ms. An on-resonance photon antibunching measurement is also realized. Our results shed light on the potential use of quantum emitters from hBN in nanophotonics and quantum information processing applications

    Ca isotope constraints on chemical weathering processes: Evidence from headwater in the Changjiang River, China

    Get PDF
    This study aims to clarify the relationship between chemical weathering of rocks and the carbon budget of rivers and better understand the weathering mechanisms of plateau watersheds. We chose to study the Jinsha River, which originates from the Tibetan Plateau and also is in the upper reaches of the Changjiang River. Analysis of hydrochemistry, radiogenic strontium isotope and stable calcium isotopes were conducted of the Jinsha River water samples, which were collected along its mainstream and main tributaries in the summer. The results show that the water chemistry of the mainstream waters is dominated by evaporite weathering, which have low 87Sr/86Sr values (0.7098–0.7108) and wide range of Sr contents (2.70–9.35 μmol/L). In contrast, tributaries of the Jinsha River have higher 87Sr/86Sr (0.7090–0.7157) and lower Sr contents (∼1 μmol/L). Moreover, the Ca isotopic compositions in the mainstream (0.87–1.11‰) are heavier than the tributaries (0.68–0.88‰) and could not be fully explained by the conventional mixing of different sources. We suggest that secondary carbonate precipitation fractionates Ca isotopes in the Jinsha River, and fractionation factors are between 0.99935 and 0.99963. At least 66% of Ca was removed in the mainstream of the Jinsha River through secondary mineral precipitation, and the average value is ∼35% in the tributaries. The results highlight that evaporite weathering results in more carbonate precipitation influencing Ca transportation and cycling in the riverine system constrained by stable Ca isotopic compositions and water chemistry

    Informational entropy : a failure tolerance and reliability surrogate for water distribution networks

    Get PDF
    Evolutionary algorithms are used widely in optimization studies on water distribution networks. The optimization algorithms use simulation models that analyse the networks under various operating conditions. The solution process typically involves cost minimization along with reliability constraints that ensure reasonably satisfactory performance under abnormal operating conditions also. Flow entropy has been employed previously as a surrogate reliability measure. While a body of work exists for a single operating condition under steady state conditions, the effectiveness of flow entropy for systems with multiple operating conditions has received very little attention. This paper describes a multi-objective genetic algorithm that maximizes the flow entropy under multiple operating conditions for any given network. The new methodology proposed is consistent with the maximum entropy formalism that requires active consideration of all the relevant information. Furthermore, an alternative but equivalent flow entropy model that emphasizes the relative uniformity of the nodal demands is described. The flow entropy of water distribution networks under multiple operating conditions is discussed with reference to the joint entropy of multiple probability spaces, which provides the theoretical foundation for the optimization methodology proposed. Besides the rationale, results are included that show that the most robust or failure-tolerant solutions are achieved by maximizing the sum of the entropies

    TSC1/2 mutations define a molecular subset of HCC with aggressive behaviour and treatment implication

    Get PDF
    Objective We investigated the mutational landscape of mammalian target of rapamycin (mTOR) signalling cascade in hepatocellular carcinomas (HCCs) with chronic HBV background, aiming to evaluate and delineate mutation-dependent mechanism of mTOR hyperactivation in hepatocarcinogenesis. Design We performed next-generation sequencing on human HCC samples and cell line panel. Systematic mutational screening of mTOR pathway-related genes was undertaken and mutant genes were evaluated based on their recurrence. Protein expressions of tuberous sclerosis complex (TSC)1, TSC2 and pRPS6 were assessed by immunohistochemistry in human HCC samples. Rapamycin sensitivity was estimated by colony-formation assay in HCC cell lines and the treatment was further tested using our patient-derived tumour xenograft (PDTX) models. Results We identified and confirmed multiple mTOR components as recurrently mutated in HBV-associated HCCs. Of significance, we detected frequent (16.2%, n=18/111) mutations of TSC1 and TSC2 genes in the HCC samples. The spectrum of TSC1/2 mutations likely disrupts the endogenous gene functions in suppressing the downstream mTOR activity through different mechanisms and leads to more aggressive tumour behaviour. Mutational disruption of TSC1 and TSC2 was also observed in HCC cell lines and our PDTX models. TSC-mutant cells exhibited reduced colony-forming ability on rapamycin treatment. With the use of biologically relevant TSC2-mutant PDTXs, we demonstrated the therapeutic benefits of the hypersensitivity towards rapamycin treatment. Conclusions Taken together, our findings suggest the significance of previously undocumented mutation-dependent mTOR hyperactivation and frequent TSC1/2 mutations in HBV-associated HCCs. They define a molecular subset of HCC having genetic aberrations in mTOR signalling, with potential significance of effective specific drug therapy.published_or_final_versio

    Solving random boundary heat model using the finite difference method under mean square convergence

    Full text link
    "This is the peer reviewed version of the following article: Cortés, J. C., Romero, J. V., Roselló, M. D., Sohaly, MA. Solving random boundary heat model using the finite difference method under mean square convergence. Comp and Math Methods. 2019; 1:e1026. https://doi.org/10.1002/cmm4.1026 , which has been published in final form at https://doi.org/10.1002/cmm4.1026. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] This contribution is devoted to construct numerical approximations to the solution of the one-dimensional boundary value problem for the heat model with uncertainty in the diffusion coefficient. Approximations are constructed via random numerical schemes. This approach permits discussing the effect of the random diffusion coefficient, which is assumed a random variable. We establish results about the consistency and stability of the random difference scheme using mean square convergence. Finally, an illustrative example is presented.Spanish Ministerio de Economía y Competitividad. Grant Number: MTM2017-89664-PCortés, J.; Romero, J.; Roselló, M.; Sohaly, M. (2019). Solving random boundary heat model using the finite difference method under mean square convergence. Computational and Mathematical Methods. 1(3):1-15. https://doi.org/10.1002/cmm4.1026S11513Han, X., & Kloeden, P. E. (2017). Random Ordinary Differential Equations and Their Numerical Solution. Probability Theory and Stochastic Modelling. doi:10.1007/978-981-10-6265-0Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061Logan, J. D. (2004). Partial Differential Equations on Bounded Domains. Undergraduate Texts in Mathematics, 121-171. doi:10.1007/978-1-4419-8879-9_4Cannon, J. R. (1964). A Cauchy problem for the heat equation. Annali di Matematica Pura ed Applicata, 66(1), 155-165. doi:10.1007/bf02412441LinPPY.On The Numerical Solution of The Heat Equation in Unbounded Domains[PhD thesis].New York NY:New York University;1993.Li, J.-R., & Greengard, L. (2007). On the numerical solution of the heat equation I: Fast solvers in free space. Journal of Computational Physics, 226(2), 1891-1901. doi:10.1016/j.jcp.2007.06.021Han, H., & Huang, Z. (2002). Exact and approximating boundary conditions for the parabolic problems on unbounded domains. Computers & Mathematics with Applications, 44(5-6), 655-666. doi:10.1016/s0898-1221(02)00180-3Han, H., & Huang, Z. (2002). A class of artificial boundary conditions for heat equation in unbounded domains. Computers & Mathematics with Applications, 43(6-7), 889-900. doi:10.1016/s0898-1221(01)00329-7Strikwerda, J. C. (2004). Finite Difference Schemes and Partial Differential Equations, Second Edition. doi:10.1137/1.9780898717938Kloeden, P. E., & Platen, E. (1992). Numerical Solution of Stochastic Differential Equations. doi:10.1007/978-3-662-12616-5Øksendal, B. (2003). Stochastic Differential Equations. Universitext. doi:10.1007/978-3-642-14394-6Holden, H., Øksendal, B., Ubøe, J., & Zhang, T. (2010). Stochastic Partial Differential Equations. doi:10.1007/978-0-387-89488-1El-Tawil, M. A., & Sohaly, M. A. (2012). Mean square convergent three points finite difference scheme for random partial differential equations. Journal of the Egyptian Mathematical Society, 20(3), 188-204. doi:10.1016/j.joems.2012.08.017Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., & Sohaly, M. A. (2018). Solving the random Cauchy one-dimensional advection–diffusion equation: Numerical analysis and computing. Journal of Computational and Applied Mathematics, 330, 920-936. doi:10.1016/j.cam.2017.02.001Cortés, J. C., Jódar, L., Villafuerte, L., & Villanueva, R. J. (2007). Computing mean square approximations of random diffusion models with source term. Mathematics and Computers in Simulation, 76(1-3), 44-48. doi:10.1016/j.matcom.2007.01.020Cortés, J. C., Jódar, L., & Villafuerte, L. (2009). Random linear-quadratic mathematical models: Computing explicit solutions and applications. Mathematics and Computers in Simulation, 79(7), 2076-2090. doi:10.1016/j.matcom.2008.11.008Henderson, D., & Plaschko, P. (2006). Stochastic Differential Equations in Science and Engineering. doi:10.1142/580
    corecore