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Ordered vertical silicon nanocones arrays coated with silver nanoparticles (AgNPs@SiNCs) are

developed as surface-enhanced Raman scattering (SERS)-active substrate, which features good

uniformity and reliable reproducibility of SERS signals. Label-free DNA at low concentrations

(10�8 M) could be quantitatively analyzed via SERS using the AgNPs@SiNCs. The Raman peak

at 732 cm�1 due to adenine breathing mode was selected as an endogenous Raman marker for

quantitative detection of label-free DNA. The AgNPs@SiNCs as high-performance SERS-active

substrates are attractive for surface enhancement mechanism investigation and biochemical sensing

applications. VC 2011 American Institute of Physics. [doi:10.1063/1.3650937]

Surface-enhanced Raman scattering (SERS) spectros-

copy is well recognized as a powerful tool for ultrahigh-

sensitivity detection of biological molecules, especially

DNA.1,2 Various SERS-active substrates (e.g., silver or gold

nanoparticles (NP)) have been developed for the detection

of biomolecules at extremely low concentrations (�pico

mole).3 Free-standing DNA molecules often have signifi-

cantly smaller Raman scattering cross-section than fluores-

cent dyes, yielding weak Raman signals even at high

concentrations (�lmol).4 For high-sensitivity detection,

DNA is generally tacked with Raman signal reporters (e.g.,

fluorescent dyes) to produce amplified SERS signals. How-

ever, such modification manipulations are often expensive

and complicated. Consequently, development of more practi-

cable SERS substrates and detection strategies for label-free

DNA detection continues to attract intense attention. A vari-

ety of SERS-active substrates with high enhancement factor

and fast response at low excitation power to avoid DNA

damage has been designed for sensitive detection of label-

free DNA.5,6 Despite the progress, uniform SERS-active

substrates which can yield reproducible and strong SERS

signals for label-free DNA detection are still in demand.7

Recently, silicon nanostructures (e.g., silicon nanowires

(SiNWs), nanopillars, etc.) have been demonstrated to be

highly effective SERS-active substrates due to their large sur-

face-to-volume ratios and unique properties.8,9 In particular,

our studies have revealed that SiNWs coated with silver nano-

particles feature high Raman enhancement factor and have

been utilized for high-sensitivity detection of various chemi-

cal/biochemical species.10,11 We recently shown that silicon

nanopillars arrays could effectively confine the incident light

on their surfaces, leading to improvement of light-conversion

efficiency and enhancement of localized electromagnetic

(EM) field.12 Based on those studies, we herein present

AgNPs decorated-silicon nanocones arrays (AgNPs@SiNCs)

for high-performance SERS-active substrate. This substrate is

highly uniform and ordered and can yield strong and repro-

ducible SERS signals. Based on this SiNCs-based biosensor,

label-free DNA of low concentration down to 10�8 mole can

be rapidly and quantitatively detected.

Highly ordered SiNCs were obtained from pre-

fabricated silicon nanopillar arrays, coated with AgNPs via

ion-beam-sputtered deposition, as illustrated in Fig. 1(a).

Patterned silicon nanopillars arrays were fabricated via nano-

sphere lithography and metal-induced etching [Fig. 1(b)] fol-

lowing our previous procedures.8,12 To enlarge the exposure

area of the substrate to laser at normal incidence, silicon

nanopillars were put in hydrogen fluoride solution (2%) for 3

min and for another 5 min after adding silver nitrate solution

(10�4 M) to obtain the cone-shape SiNCs. After removal of

silver residues in nitric acid solution, the SiNCs were treated

by ion beam sputtering of silver at an optimized sputtering

time of 120 s under 12.5 mA. Afterwards, each SiNC was

completely decorated with AgNPs around 20 nm in diame-

ters, as shown in Figs. 1(c) and 1(d). Elements of silicon, sil-

ver, oxygen, and carbon could be observed in the energy-

dispersive x-ray spectroscopy of AgNPs@SiNCs before

DNA assembly [Fig. 2(a)]. However, oxidization of SiNCs

and AgNPs as well as carbon pollution of the system by the

environment have little effect in DNA detection experiments.

The system left in air condition more than two weeks showed

no obvious decrease in surface enhancement performance.

AgNPs@SiNCs were cut into small pieces of 5� 5 mm2 and

washed 3 times by milli-Q water before DNA immobiliza-

tion. Thiol-modified single-strand DNA (S1: 30-HS-(CH2)

6-TGAGTGGACGTCAACGAGCAA-50; S2: 30-HS-(CH2)6-

ATAACATTCCTCCGCAATACTCCAAAAGGTAATTA-50)
was diluted to 10�6 M, 10�7 M, 10�8 M with sterile water;

SiNCs were immersed in the incubation solution over-night

for DNA immobilization.11 The as-prepared sample was

washed carefully in milli-Q water, followed by drying in

nitrogen flow to avoid physisorption (or non-specific bind-

ing) of chemicals on the substrates. No fluorescent labels or

Raman dyes were used.

a)Electronic mail: yaohe@suda.edu.cn.
b)Electronic mail: apannale@cityu.edu.hk.
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Figure 1 shows the as-prepared vertical AgNPs@SiNCs

are highly ordered with a uniform diameter and length. The

inset in Fig. 2(b) shows colorful diffraction pattern of SiNCs

under ambient light, revealing the highly periodic structure

in macro scale. Reflectance spectra of AgNPs@SiNCs were

investigated as a function of wavelength using a UV-Vis-IR

absorption spectrometer. Fig. 2(b) shows the reflectance

spectrum reaches the minimal value around 500 nm, denot-

ing the optimal resonant excitation.7 Importantly, the reflec-

tance spectrum reveals over 90% of the incident energy is

absorbed by the substrate, which greatly increases the sur-

face enhancement efficiency. 514 nm was chosen as the

excitation wavelength in the following Raman-relevant

experiment to take advantage of the optimal resonant excita-

tion and light coupling around 500 nm.

Raman maps without biomolecules were conducted to

evaluate the uniformity of the system. Optical-phonon peak

of silicon at 520 cm�1 is the strongest silicon Raman band

frequently used as the distinctive and standard reference in

conventional Raman studies.13 Fig. 3(a) shows one example

of the mapping results. The uniform peak intensities at 520

cm�1 from �280 data sets demonstrate the uniformity of the

AgNPs@SiNCs. AgNPs@SiNCs were further utilized as

SERS substrates for label-free DNA analysis. The SERS

spectra from the DNA samples are in well accord with litera-

ture reports, which are dominated by the strong peak at 732

cm�1.14 This Raman peak, being adenine breathing mode

and the most characteristic Raman peak of DNA, was

selected as an endogenous Raman marker for label-free

DNA detection.6 Fig. 3(b) shows SERS assays at 10 random

points from SiNCs incubated with 10�8 M DNA (S1). Sig-

nificantly, all 10 points produced nearly identical Raman

spectra under same experiment conditions (laser power: 177

lW; exposure time: 1 s), demonstrating good reproducibility

and fast response of Raman signals from the AgNPs@SiNCs

for low concentration of DNA under low excitation power.

Moreover, several Raman maps spectra from large-area

AgNPs@SiNCs substrate (50� 40 lm2) show similar

Raman intensity and spectra [Fig. 4(a) inset] for 10�6 M

DNA S1 with a laser power of 177 W and an exposure time

of 0.1 s at each point. Peak intensities distribution of DNA

and silicon was analyzed from exhaustive Raman map mea-

surement results. As shown in Fig. 4(a), DNA peak at 732

cm�1 and silicon peak at 520 cm�1 both show narrow distri-

bution capable for quantitative analysis; and the average in-

tensity of DNA Raman peak is even higher than that of

silicon.

FIG. 2. (Color online) (a) EDAX characterization of AgNPs@SiNCs before

assembly with DNA. (b) Reflectance spectrum of AgNPs@SiNCs at normal

incidence. Inset illustrates the strong diffraction pattern of a 20 mm � 20

mm AgNPs@SiNCs wafer when illuminated by ambient light.

FIG. 3. (Color online) (a) Raman map without assembly with DNA. There

are �280 data sets in a map area �40� 40 lm2. Color depth denotes peak

intensity at that point. (b) Raman spectra of 10�8 M DNA S1 from 10 ran-

domly selected locations on AgNPs@SiNCs recorded at 514 nm excitation

with P¼ 177 lW and T¼ 1 s.

FIG. 4. (Color online) (a) Measured intensity probability distribution of Si

520 cm�1 and DNA 732 cm�1 Raman peak from SERS spectra of 10�6 M

DNA S1 on AgNPs@SiNCs substrate mapping from an area 50� 40 lm2

using 514 nm excitation at P¼ 177 lW and T¼ 0.1 s. Inset shows several

overlapping SERS spectra from Raman map result. (b) Average intensities

of DNA peak at 732 cm�1 between DNA S1 (7 A) and S2 (14 A). Statistic

results come from exhaustive measurements. Error bar stands for standard

deviation of the data.

FIG. 1. (a) Schematic of fabrication procedures of AgNPs@SiNCs from

silicon nanopillars arrays template. (b) Typical SEM image of the silicon

nanopillars array template obtained following (a). The inset shows the

cross-section view of the array. (c) Silicon nanocones array after silver nano-

particles sputtered for 2 min over the body via IBSD system, following step

3 (average bottom diameter �474 nm, top diameter �100 nm, and height

�1 lm). (d) High-magnification SEM of AgNPs@SiNCs showing AgNPs

10-30 nm in diameters.
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We next applied AgNPs@SiNCs for quantitative analy-

sis of label-free DNA with different number of adenines (A).

The Raman peak intensity at 732 cm�1 of the DNA contain-

ing 14 A (S2 10�8 M) is nearly twice as intense as that of the

DNA containing 7 A (S1 10�8 M). The statistic data from

exhaustive measurements demonstrated a direct ratio rela-

tionship between the average peak intensities and number of

adenines in DNA sequences, as indicated by Fig. 4(b) with

small error bars. Compared with traditional methods for

quantitative analysis of DNA, such as polymerase chain

reaction (PCR), the present Raman technique could get

results more quickly and at less cost.15

The present system combines the advantages of top-

down and bottom-up technologies to achieve both uniformity

and high SERS enhancement, which enables the quantitative

analysis of label-free DNA. Due to morphology improve-

ment, we suppose the excellent Raman enhancement proper-

ties of AgNPs@SiNCs would be mainly ascribed to two

aspects, leading to distinctive enhancement mechanism of

AgNPs@SiNCs versus published cone-shape SERS sub-

strates.5,16 The highly ordered periodic structure of

AgNPs@SiNCs would effectively attract and confine light

inside and on the surface of SiNCs; thus by choosing wave-

length of excitation light at optimal resonance point, the EM-

field near the surface of AgNPs could be significantly magni-

fied due to the resonance of Raman light.12 Meanwhile, the

high packing density of AgNPs with diameters �20 nm on

the three-dimensional surface of SiNCs enables the coupling

of surface plasmon polaritons. Additionally, the ordered

SiNCs arrays with rational interspaces would facilitate the

efficient assembly of biomolecules into three-dimensional

system, which would expand the detection workspace.

DNA was assembled on the surface of AgNPs via SH-

Ag chemical bond. The Raman scattering cross-section of

thiol-modified label-free DNA would be amplified promi-

nently by the surrounding high EM-field near the surface of

AgNPs. Meanwhile, Raman peak of adenine breathing mode

shifts around 3 cm�1 compared to literature values,6,14 which

may be caused by the interaction between single-strand

DNA and AgNPs@SiNCs system.

To conclude, we prepare a silicon-based SERS-active

substrate, i.e., AgNPs-coated SiNCs via a top-down method.

The resultant AgNPs@SiNCs is highly uniform and features

excellent SERS properties, including high enhancement and

reproducibility of Raman signals. Label-free DNA of low

concentrations (10�8 M) could be quantitatively detected by

using the AgNPs@SiNCs. AgNPs@SiNCs as high-

performance SERS-active substrate is promising various

quantitative chemical and biochemical sensing applications.

The highly ordered AgNPs@SiNCs provides a good platform

to investigate the EM-field enhancement mechanism of SERS

as well as light propagation and localization phenomenon in

periodic matrix structures.
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