1,179 research outputs found
Liquid-Drop Model and Quantum Resistance Against Noncompact Nuclear Geometries
The importance of quantum effects for exotic nuclear shapes is demonstrated.
Based on the example of a sheet of nuclear matter of infinite lateral
dimensions but finite thickness, it is shown that the quantization of states in
momentum space, resulting from the confinement of the nucleonic motion in the
conjugate geometrical space, generates a strong resistance against such a
confinement and generates restoring forces driving the system towards compact
geometries. In the liquid-drop model, these quantum effects are implicitly
included in the surface energy term, via a choice of interaction parameters, an
approximation that has been found valid for compact shapes, but has not yet
been scrutinized for exotic shapes.Comment: 9 pages with 3 figure
Meta-stable SUSY Breaking Model in Supergravity
We analyze a supersymmetry (SUSY) breaking model proposed by Intriligator,
Seiberg and Shih in a supergravity (SUGRA) framework. This is a simple and
natural setup which demands neither extra superpotential interactions nor an
additional gauge symmetry. In the SUGRA setup, the U(1)R symmetry is explicitly
broken by the constant term in the superpotential, and pseudo-moduli field
naturally takes non-zero vacuum expectation value through a vanishing
cosmological constant condition. Sfermions tend to be heavier than gauginos,
and the strong-coupling scale is determined once a ratio of sfermion to gaugino
masses is fixed.Comment: 13 page
Baryon phase-space density in heavy-ion collisions
The baryon phase-space density at mid-rapidity from central heavy-ion
collisions is estimated from proton spectra with interferometry and deuteron
coalescence measurements. It is found that the mid-rapidity phase-space density
of baryons is significantly lower at the SPS than the AGS, while those of total
particles (pion + baryon) are comparable. Thermal and chemical equilibrium
model calculations tend to over-estimate the phase-space densities at both
energies.Comment: 5 pages, 2 tables, no figure. RevTeX style. Accepted for publication
in Phys. Rev. C Rapid Communicatio
Effects of Sc and Zr on the texture and mechanical anisotropy of high strength Al - Zn - Mg alloy sheets
Texture, mechanical anisotropy and microstructure of aged Al–Zn–Mg, Al–Zn–Mg–0.1Sc–0.1Zr and Al–Zn–Mg–0.25Sc–0.1Zr (wt.%) alloy sheets were investigated by tensile tests and electron microscopy. Sc and Zr additions do not change the texture of homogenized and cold rolled alloys, but transfer the cube texture of the aged Al–Zn–Mg alloy into -fiber rolling texture. With increasing Sc and Zr additions, the strength significantly increases, and mechanical anisotropy is enhanced. The strength is highest parallel to the rolling direction, whereas it is lowest at a 45° angle to the rolling direction. The higher strength is mainly due to grain boundary strengthening and precipitation strengthening caused by Al₃ScxZr₁₋x nano-particles. The stronger mechanical anisotropy is ascribed to the rolling texture, due to the inhibitory effect of Al₃ScxZr₁₋x on recrystallization. A new model was successfully established to reveal the interrelation between Sc and Zr additions, texture and yield strength anisotropy of Al–Zn–Mg sheets
An analysis of the FIR/RADIO Continuum Correlation in the Small Magellanic Cloud
The local correlation between far-infrared (FIR) emission and radio-continuum
(RC) emission for the Small Magellanic Cloud (SMC) is investigated over scales
from 3 kpc to 0.01 kpc. Here, we report good FIR/RC correlation down to ~15 pc.
The reciprocal slope of the FIR/RC emission correlation (RC/FIR) in the SMC is
shown to be greatest in the most active star forming regions with a power law
slope of ~1.14 indicating that the RC emission increases faster than the FIR
emission. The slope of the other regions and the SMC are much flatter and in
the range of 0.63-0.85. The slopes tend to follow the thermal fractions of the
regions which range from 0.5 to 0.95. The thermal fraction of the RC emission
alone can provide the expected FIR/RC correlation. The results are consistent
with a common source for ultraviolet (UV) photons heating dust and Cosmic Ray
electrons (CRe-s) diffusing away from the star forming regions. Since the CRe-s
appear to escape the SMC so readily, the results here may not provide support
for coupling between the local gas density and the magnetic field intensity.Comment: 19 pages, 7 Figure
Inelastic lifetimes of confined two-component electron systems in semiconductor quantum wire and quantum well structures
We calculate Coulomb scattering lifetimes of electrons in two-subband quantum
wires and in double-layer quantum wells by obtaining the quasiparticle
self-energy within the framework of the random-phase approximation for the
dynamical dielectric function. We show that, in contrast to a single-subband
quantum wire, the scattering rate in a two-subband quantum wire contains
contributions from both particle-hole excitations and plasmon excitations. For
double-layer quantum well structures, we examine individual contributions to
the scattering rate from quasiparticle as well as acoustic and optical plasmon
excitations at different electron densities and layer separations. We find that
the acoustic plasmon contribution in the two-component electron system does not
introduce any qualitatively new correction to the low energy inelastic
lifetime, and, in particular, does not produce the linear energy dependence of
carrier scattering rate as observed in the normal state of high-
superconductors.Comment: 16 pages, RevTeX, 7 figures. Also available at
http://www-cmg.physics.umd.edu/~lzheng
Current-Density Functional Theory of the Response of Solids
The response of an extended periodic system to a homogeneous field (of
wave-vector ) cannot be obtained from a time-dependent density
functional theory (TDDFT) calculation, because the
Runge-Gross theorem does not apply. Time-dependent {\em current}-density
functional theory is needed and demonstrates that one key ingredient missing
from TDDFT is the macroscopic current. In the low-frequency limit, in certain
cases, density polarization functional theory is recovered and a formally exact
expression for the polarization functional is given.Comment: 5 pages, accepted in PR
The PL calibration for Milky Way Cepheids and its implications for the distance scale
The rationale behind recent calibrations of the Cepheid PL relation using the
Wesenheit formulation is reviewed and reanalyzed, and it is shown that recent
conclusions regarding a possible change in slope of the PL relation for
short-period and long-period Cepheids are tied to a pathological distribution
of HST calibrators within the instability strip. A recalibration of the
period-luminosity relation is obtained using Galactic Cepheids in open clusters
and groups, the resulting relationship, described by log L/L_sun =
2.415(+-0.035) + 1.148(+-0.044)log P, exhibiting only the moderate scatter
expected from color spread within the instability strip. The relationship is
confirmed by Cepheids with HST parallaxes, although without the need for
Lutz-Kelker corrections, and in general by Cepheids with revised Hipparcos
parallaxes, albeit with concerns about the cited precisions of the latter. A
Wesenheit formulation of Wv = -2.259(+-0.083) - 4.185(+-0.103)log P for
Galactic Cepheids is tested successfully using Cepheids in the inner regions of
the galaxy NGC 4258, confirming the independent geometrical distance
established for the galaxy from OH masers. Differences between the extinction
properties of interstellar and extragalactic dust may yet play an important
role in the further calibration of the Cepheid PL relation and its application
to the extragalactic distance scale.Comment: Accepted for Publication (Astrophysics & Space Science
Microfluidic and Nanofluidic Cavities for Quantum Fluids Experiments
The union of quantum fluids research with nanoscience is rich with
opportunities for new physics. The relevant length scales in quantum fluids,
3He in particular, are comparable to those possible using microfluidic and
nanofluidic devices. In this article, we will briefly review how the physics of
quantum fluids depends strongly on confinement on the microscale and nanoscale.
Then we present devices fabricated specifically for quantum fluids research,
with cavity sizes ranging from 30 nm to 11 microns deep, and the
characterization of these devices for low temperature quantum fluids
experiments.Comment: 12 pages, 3 figures, Accepted to Journal of Low Temperature Physic
Comparisons of Statistical Multifragmentation and Evaporation Models for Heavy Ion Collisions
The results from ten statistical multifragmentation models have been compared
with each other using selected experimental observables. Even though details in
any single observable may differ, the general trends among models are similar.
Thus these models and similar ones are very good in providing important physics
insights especially for general properties of the primary fragments and the
multifragmentation process. Mean values and ratios of observables are also less
sensitive to individual differences in the models. In addition to
multifragmentation models, we have compared results from five commonly used
evaporation codes. The fluctuations in isotope yield ratios are found to be a
good indicator to evaluate the sequential decay implementation in the code. The
systems and the observables studied here can be used as benchmarks for the
development of statistical multifragmentation models and evaporation codes.Comment: To appear on Euorpean Physics Journal A as part of the Topical Volume
"Dynamics and Thermodynamics with Nuclear Degrees of Freedo
- …