2,607 research outputs found
Consistent relaxation matching for handwritten Chinese character recognition
Due to the complexity in structure and the various distortions (translation, rotation, shifting, and deformation) in different writing styles of Handwritten Chinese Characters(HCCs), it is more suitable to use a structural matching algorithm for computer recognition of HCC. Relaxation matching is a powerful technique which can tolerate considerable distortion. However, most relaxation techniques so far developed for Handwritten Chinese Character Recognition (HCCR) are based on a probabilistic relaxation scheme. In this paper, based on local constraint of relaxation labelling and optimization theory, we apply a new relaxation matching technique to handwritten character recognition. From the properties of the compatibility constraints, several rules are devised to guide the design of the compatibility function, which plays an important role in the relaxation process. By parallel use of local contextual information of geometric relaxationship among strokes of two characters, the ambiguity between them can be relaxed iteratively to achieve optimal consistent matching.published_or_final_versio
A deformable elastic matching model for handwritten Chinesecharacter recognition
Conference Theme: Intelligent Systems for the 21st CenturyThis paper describes a deformable elastic matching approach to handwritten Chinese character recognition (HCCR). Handwritten character is regarded as a kind of deformable object, with elastic property. For the same category of character, we assume that different handwriting variations share the same topological structure, but may differ in shape details. The variations between different handwriting characters are modelled by a set of stroke displacement vectors (SDV). According to the SDV derived, a model character is deformed gradually, in an effort to transform itself much closer to an input character. Experiments show that the proposed elastic matching model can efficiently deal with local shape changes and variations between characters.published_or_final_versio
Effect of isospin dependent cross-section on fragment production in the collision of charge asymmetric nuclei
To understand the role of isospin effects on fragmentation due to the
collisions of charge asymmetric nuclei, we have performed a complete
systematical study using isospin dependent quantum molecular dynamics model.
Here simulations have been carried out for , where n
varies from 47 to 59 and for , where m varies from 14
to 23. Our study shows that isospin dependent cross-section shows its influence
on fragmentation in the collision of neutron rich nuclei
A Dynamic Noise Level Algorithm for Spectral Screening of Peptide MS/MS Spectra
<p>Abstract</p> <p>Background</p> <p>High-throughput shotgun proteomics data contain a significant number of spectra from non-peptide ions or spectra of too poor quality to obtain highly confident peptide identifications. These spectra cannot be identified with any positive peptide matches in some database search programs or are identified with false positives in others. Removing these spectra can improve the database search results and lower computational expense.</p> <p>Results</p> <p>A new algorithm has been developed to filter tandem mass spectra of poor quality from shotgun proteomic experiments. The algorithm determines the noise level dynamically and independently for each spectrum in a tandem mass spectrometric data set. Spectra are filtered based on a minimum number of required signal peaks with a signal-to-noise ratio of 2. The algorithm was tested with 23 sample data sets containing 62,117 total spectra.</p> <p>Conclusions</p> <p>The spectral screening removed 89.0% of the tandem mass spectra that did not yield a peptide match when searched with the MassMatrix database search software. Only 6.0% of tandem mass spectra that yielded peptide matches considered to be true positive matches were lost after spectral screening. The algorithm was found to be very effective at removal of unidentified spectra in other database search programs including Mascot, OMSSA, and X!Tandem (75.93%-91.00%) with a small loss (3.59%-9.40%) of true positive matches.</p
The generalized 3-edge-connectivity of lexicographic product graphs
The generalized -edge-connectivity of a graph is a
generalization of the concept of edge-connectivity. The lexicographic product
of two graphs and , denoted by , is an important graph
product. In this paper, we mainly study the generalized 3-edge-connectivity of
, and get upper and lower bounds of .
Moreover, all bounds are sharp.Comment: 14 page
Statistical study of conductance properties in one-dimensional quantum wires focusing on the 0.7 anomaly
The properties of conductance in one-dimensional (1D) quantum wires are
statistically investigated using an array of 256 lithographically-identical
split gates, fabricated on a GaAs/AlGaAs heterostructure. All the split gates
are measured during a single cooldown under the same conditions. Electron
many-body effects give rise to an anomalous feature in the conductance of a
one-dimensional quantum wire, known as the `0.7 structure' (or `0.7 anomaly').
To handle the large data set, a method of automatically estimating the
conductance value of the 0.7 structure is developed. Large differences are
observed in the strength and value of the 0.7 structure [from to
], despite the constant temperature and identical device
design. Variations in the 1D potential profile are quantified by estimating the
curvature of the barrier in the direction of electron transport, following a
saddle-point model. The 0.7 structure appears to be highly sensitive to the
specific confining potential within individual devices.This is the author's accepted manuscript. The final version is published by ACS in Physical Review B and can be found here: http://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.045426
Symmetry energy of dense matter in holographic QCD
We study the nuclear symmetry energy of dense matter using holographic QCD.
To this end, we consider two flavor branes with equal quark masses in a
D4/D6/D6 model. We find that at all densities the symmetry energy monotonically
increases. At small densities, it exhibits a power law behavior with the
density, .Comment: 9 pages, 3 figure
On the conservation of the slow conformational dynamics within the amino acid kinase family: NAGK the paradigm
N-Acetyl-L-Glutamate Kinase (NAGK) is the structural paradigm for examining the catalytic mechanisms and dynamics of amino acid kinase family members. Given that the slow conformational dynamics of the NAGK (at the microseconds time scale or slower) may be rate-limiting, it is of importance to assess the mechanisms of the most cooperative modes of motion intrinsically accessible to this enzyme. Here, we present the results from normal mode analysis using an elastic network model representation, which shows that the conformational mechanisms for substrate binding by NAGK strongly correlate with the intrinsic dynamics of the enzyme in the unbound form. We further analyzed the potential mechanisms of allosteric signalling within NAGK using a Markov model for network communication. Comparative analysis of the dynamics of family members strongly suggests that the low-frequency modes of motion and the associated intramolecular couplings that establish signal transduction are highly conserved among family members, in support of the paradigm sequence→structure→dynamics→function © 2010 Marcos et al
Formation of GaAs hollow above InAs quantum dots
GaAs hollow nanostructure is constructed above low-temperature (250 Cdegrees) InAs quantum dots after a thin GaAs layer capping at 480 degreesC. The hollows mostly disappeared after the high temperature annealing at 580degreesC. The formation mechanism is simply discussed
The Expression and Localization of N-Myc Downstream-Regulated Gene 1 in Human Trophoblasts
The protein N-Myc downstream-regulated gene 1 (NDRG1) is implicated in the regulation of cell proliferation, differentiation, and cellular stress response. NDRG1 is expressed in primary human trophoblasts, where it promotes cell viability and resistance to hypoxic injury. The mechanism of action of NDRG1 remains unknown. To gain further insight into the intracellular action of NDRG1, we analyzed the expression pattern and cellular localization of endogenous NDRG1 and transfected Myc-tagged NDRG1 in human trophoblasts exposed to diverse injuries. In standard conditions, NDRG1 was diffusely expressed in the cytoplasm at a low level. Hypoxia or the hypoxia mimetic cobalt chloride, but not serum deprivation, ultraviolet (UV) light, or ionizing radiation, induced the expression of NDRG1 in human trophoblasts and the redistribution of NDRG1 into the nucleus and cytoplasmic membranes associated with the endoplasmic reticulum (ER) and microtubules. Mutation of the phosphopantetheine attachment site (PPAS) within NDRG1 abrogated this pattern of redistribution. Our results shed new light on the impact of cell injury on NDRG1 expression patterns, and suggest that the PPAS domain plays a key role in NDRG1's subcellular distribution. © 2013 Shi et al
- …