72 research outputs found

    Safety Grade Evaluation of Aqueduct Structure Based on Fuzzy Cloud Theory Analysis

    Get PDF
    In view of the limitation of natural conversion between qualitative concept and quantitative value, the fuzzy analysis method cannot be employed to improve the multi-stage fuzzy evaluation method. Improvement of multilevel fuzzy evaluation method based on cloud theory was found, which could comprehensively consider the uncertainty of random combinations and the fuzziness of interaction between influencing factors, and the shortcomings of conventional fuzzy evaluation methods as well eliminated. The structure of 5#U-aqueduct in Jingdian Irrigation District (Gansu, China) was chosen as the research object. Based on the multi-level fuzzy evaluation index system of structural safety, experts were invited to score the importance of factors according to the cloud theory scale criterion to establish a judgment matrix. Therefore, the evaluation set, weight and membership cloud model of evaluation system was constituted by means of bridge safety assessment criterion and cloud generator principle. Furthermore, comprehensive evaluation results of aqueduct service states were obtained by multistage fuzzy composite mapping method, and the actual position of structural safety grade was obtained by comparing the evaluation result with the comment layer cloud drop diagram. The results showed that using cloud model parameters (Ex, En and He) to describe the relative importance of factors can better reflect the randomness and fuzziness of each other than the traditional single number, which was helpful to get the evaluation results accurately and objectively; The comprehensive evaluation results of the aqueduct structure obtained by calculation were WV(75.149, 9.95, 4.16).The simulated cloud droplet diagram was located between II and III classes, and tends to the III standard, which indicated that the overall security of the structure was sufferable. However, attention should be paid to the maintenance and repair of the detailed components. The consequences agreed with the evaluation results of the experts, which indicates that the improved evaluation method has good practicability as well as can be popularized and applied

    Entropy Generation of Secondary Flow in a Turning Passage with Different Boundary Layer Characteristics

    Get PDF
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).The development of secondary flow along a curved channel is a fundamental flow phenomenon occurring in a wide range of engineering applications, including turbomachinery, aerospace, heating, ventilation, air conditioning, etc. The underlying flow physics about end-wall secondary flows has been well-documented in the open literature, while the interaction between a secondary flow and a side-wall boundary layer, which is critical to the aerothermal performance of a side-wall surface, has not been comprehensively studied. In this study, the entropy generation of secondary flow and the interaction between an end-wall passage vortex and a side-wall boundary layer were numerically investigated by Reynolds-averaged Navier–Stokes (RANS) CFD for a 90° curved channel. The transportation effect of secondary flow and the generation mechanism of an induced vortex pair on the side wall is reported. It was also found that the growth of the secondary flow can be suppressed due to the displacement effect of the side-wall boundary layer. Furthermore, it was found that the interaction between a secondary flow and a side-wall boundary layer provides a suppression effect on side-wall boundary layer separation.Peer reviewe

    Expression and Roles of Antimicrobial Peptides in Innate Defense of Airway Mucosa: Potential Implication in Cystic Fibrosis

    Get PDF
    © Copyright © 2020 Geitani, Moubareck, Xu, Karam Sarkis and Touqui. The treatment of respiratory infections is associated with the dissemination of antibiotic resistance in the community and clinical settings. Development of new antibiotics is notoriously costly and slow; therefore, alternative strategies are needed. Antimicrobial peptides (AMPs), the central effector molecules of the immune system, are being considered as alternatives to conventional antibiotics. Most AMPs are epithelium-derived and play a key role in host defense at mucosal surfaces. They are classified on the basis of their structure and amino acid motifs. These peptides display a range of activities, including not only direct antimicrobial activity, but also immunomodulation and wound repair. In the lung, airway epithelial cells and neutrophils, in particular, contribute to AMP synthesis. The relevance of AMPs for host defense against infection has been demonstrated in animal models and is supported by observations in patient studies, showing altered expression and/or unfavorable circumstances for their action in a variety of lung diseases. Of note, AMPs are active against bacterial strains that are resistant to conventional antibiotics, including multidrug-resistant bacteria. Several strategies have been proposed to use these peptides in the treatment of infections, including direct administration of AMPs. In this review, we focus on studies related to direct bactericidal effects of AMPs and their potential clinical applications with a particular focus on cystic fibrosis

    Finite element study of the biomechanical effects on the rotator cuff under load

    Get PDF
    Rotator cuff injuries account for 50% of shoulder disorders that can cause shoulder pain and reduced mobility. The occurrence of rotator cuff injury is related to the variation in shoulder load, but the mechanical changes in the rotator cuff caused by load remain unclear. Therefore, the mechanical results of the rotator cuff tissue during glenohumeral abduction and adduction were analyzed based on a finite element shoulder model under non-load (0 kg) and load (7.5 kg) conditions. The results showed that the maximum von Mises stress on the supraspinatus muscle was larger than that on the subscapularis, infraspinatus, and teres minor muscles during glenohumeral abduction. Compared with the non-load condition, the maximum von Mises stress on the supraspinatus muscle increased by 75% under the load condition at 30° abduction. Under the load condition, the supraspinatus joint side exhibited an average stress that was 32% greater than that observed on the bursal side. The von Mises stress on the infraspinatus muscle was higher than that in other rotator cuff tissues during adduction. The stress on the infraspinatus muscle increased by 36% in the load condition compared to the non-load condition at 30° adduction. In summary, the increased load changed the mechanical distribution of rotator cuff tissue and increased the stress differential between the joint aspect and the bursal aspect of the supraspinatus tendon

    Exact controllability of multiplex networks

    Get PDF
    Date of Acceptance: 11/09/2014Peer reviewedPublisher PD

    Evaluation of soil fertility of the shelter-forest land along the Tarim Desert Highway

    Get PDF
    To study the changes of soil fertility of the shelter-forest land along the Tarim Desert Highway, soils from the forest land were collected at the layers of 0-10 cm, 10-20 cm, 20-30 cm. Different soil fertility parameters were measured, and quantitative evaluation of soil fertility was performed by the soil integrated fertility index (IFI). The main results show that the construction of the shelter forest along the Tarim Desert Highway improved the soil physical structure, increased soil porosity and enhanced water-holding capacity. With the increase of plantation time of the shelter forest, soil microbial biomass C, N, P and the activities of six types of enzyme were enhanced, which promoted the accumulation and transformation of soil nutrients of the forest land. Consequently, the soil nutrients in 12-year-old forest land were much higher than in the newer ones and drifting sand. However, soil salt content of the older forest land was higher owing to the drip-irrigation with salt water. Through the comprehensive evaluation, we found that soil fertility index in the forest land was enhanced with the forest age, and it had close correlations with the growth indices of the forest trees. In summary, construction of the shelter-forest along the Tarim Desert Highway accelerated the improvement of aeolian soil in the forest land, and the soil fertility improved year by year. We conclude that the forest trees grow normally under the stress of the present drip-irrigation with salt water

    Screening of linear B-cell epitopes and its proinflammatory activities of Haemophilus parasuis outer membrane protein P2

    Get PDF
    Haemophilus parasuis is a commensal organism of the upper respiratory tract of pigs, but virulent strains can cause Glässer’s disease, resulting in significant economic losses to the swine industry. OmpP2 is an outer membrane protein of this organism that shows considerable heterogeneity between virulent and non-virulent strains, with classification into genotypes I and II. It also acts as a dominant antigen and is involved in the inflammatory response. In this study, 32 monoclonal antibodies (mAbs) against recombinant OmpP2 (rOmpP2) of different genotypes were tested for reactivity to a panel of OmpP2 peptides. Nine linear B cell epitopes were screened, including five common genotype epitopes (Pt1a, Pt7/Pt7a, Pt9a, Pt17, and Pt19/Pt19a) and two groups of genotype-specific epitopes (Pt5 and Pt5-II, Pt11/Pt11a, and Pt11a-II). In addition, we used positive sera from mice and pigs to screen for five linear B-cell epitopes (Pt4, Pt14, Pt15, Pt21, and Pt22). After porcine alveolar macrophages (PAMs) were stimulated with overlapping OmpP2 peptides, we found that the epitope peptides Pt1 and Pt9, and the loop peptide Pt20 which was adjacent epitopes could all significantly upregulated the mRNA expression levels of IL-1α, IL-1β, IL-6, IL-8, and TNF-α. Additionally, we identified epitope peptides Pt7, Pt11/Pt11a, Pt17, Pt19, and Pt21 and loop peptides Pt13 and Pt18 which adjacent epitopes could also upregulate the mRNA expression levels of most proinflammatory cytokines. This suggested that these peptides may be the virulence-related sites of the OmpP2 protein, with proinflammatory activity. Further study revealed differences in the mRNA expression levels of proinflammatory cytokines, including IL-1β and IL-6, between genotype-specific epitopes, which may be responsible for pathogenic differences between different genotype strains. Here, we profiled a linear B-cell epitope map of the OmpP2 protein and preliminarily analyzed the proinflammatory activities and effects of these epitopes on bacterial virulence, providing a reliable theoretical basis for establishing a method to distinguish strain pathogenicity and to screen candidate peptides for subunit vaccines

    Comprehensive eco-environmental effects of the shelter-forest ecological engineering along the Tarim Desert Highway

    Get PDF
    In this work, we report a comprehensive study about the eco-environmental effects of the shelter forest along the Tarim Desert Highway, including the effects on aeolian environment, soil, micro-climate, biodiversity, and groundwater. The results show that: (1) The movement of windblown sand near the ground surface was affected by the shelter forest. The wind speed and sediment transport rate in the shelter forest decreased by 64%-80% and 87.45%-99.02%, respectively. In addition, there were also significant changes in the sand flux structure, the sand grain size, and the deflation and deposition on the ground surface. (2) Compared to the natural mobile sand, the soil bulk density in the forest area decreased while the total salt content, the total porosity, and the water content increased. In addition, the soil fertility was significantly improved in the forest area, and showed the "first rapid, then slow" variation pattern. (3) The shelter forest showed positive effects on the micro-climate. Within the 6 m height above the ground, the air temperature in the shelter forest at different heights was lower than that in the mobile sand, while the air humidity was higher, while, the soil temperature was also lower in the shelter forest than mobile sand. (4) The number of soil microbial species increased significantly with the improvement of habitat in the shelterbelt. However, the population of different species was not distributed evenly across the surveyed area. (5) Currently, no significant effects of groundwater-pumping and forest-irrigation water have been found on the groundwater level and its salinity. The variation amplitude of both groundwater level and salinity was at the level of centimeters and 1g/L, respectively. No obvious variation trend has been observed
    corecore