576 research outputs found
Pseudo-Hall effect and anisotropic magnetoresistance in a micronscale Ni80Fe20 device
The pseudo-Hall effect (PHE) and anisotropic magnetoresistance (AMR) in a micronscale Ni80Fe20, six-terminal device, fabricated by optical lithography and wet chemical etching from a high quality UHV grown 30 Angstrom Au/300 Angstrom Ni80Fe20 film, have been studied. The magnetisation reversal in different parts of the device has been measured using magneto-optical Kerr effect (MOKE), The device gives a 50% change in PHE voltage with an ultrahigh sensitivity of 7.3%Oe(-1) at room temperature. The correlation between the magnetisation, magneto-transport properties, lateral shape of the device and directions of the external applied field is discussed based on extensive MOKE, AMR and PHE results
Influence of lateral geometry on magnetoresistance and magnetisation reversal in Ni80Fe20 wires
The magnetisation reversal processes and magnetoresistance behaviour in micron-sized Ni80Fe20 wires with triangular and rectangular modulated width have been studied. The wires were fabricated by electron beam lithography and a lift-off process. A combination of magnetic force microscopy (MFM), magneto-optical Kerr effect (MOKE) and magnetoresistance (MR) measurements shows that the lateral geometry of the wires greatly influences the magnetic and transport properties. The width modulations modify not only the shape-dependent demagnetising fields, but also the current density. The correlation between the lateral geometry, the magnetic and the transport properties is discussed based on MFM, MOKE and MR results
Magnetic domain evolution in permalloy mesoscopic dots
Permalloy (Ni80Fe20) squares (30 nm thick and w mu m wide; 1 less than or equal to w less than or equal to 200 mu m) and circular disks (30 nm thick and r mu m diameter; 1 less than or equal to r less than or equal to 200 mu m) prepared on a GaAs (100) substrate were observed in both their demagnetized and remanent states by magnetic force microscopy (MFM) associated with non-contact atomic force microscopy (NC-AFM). The squares (2 less than or equal to w mu m) exhibited conventional closure domains and the corner plays a very important role in creating new walls. The circular disks, on the other hand, formed either vortex domain (5 less than or equal to r less than or equal to 20 mu m) or multi-domain (50 less than or equal to r mu m) states, The magnetization rotation is observed by MFM to change according to the size and shape of the elements, The MFM observations are supported by micromagnetic calculations which confirm the effect of the corner on the domain wall formation
Magnetization reversal in mesoscopic Ni80Fe20 wires: A magnetic domain launching device
The magnetization reversal process in mesoscopic permalloy (Ni80Fe20) wire structures has been investigated using scanning Kerr microscopy, magnetic force microscopy (MFM) and micromagnetic calculations. We find that the junction offers a site for reversed domain wall nucleation in the narrow part of the wires. As a consequence, the switching field is dominated by the domain nucleation field and the junction region initiates reversal by the wall motion following the nucleation of domains. Our results suggest the possibility of designing structures that can be used to “launch” reverse domains in narrow wires within a controlled field rang
Ferromagnetic/III-V semiconductor heterostructures and magneto-electronic devices
The interface magnetic and electronic properties of two Fe/III-V semiconductor systems, namely Fe/GaAs and Fe/InAs, grown at room temperature have been studied. A "magnetic interface", which is essential for the fabrication of magneto-electronic (ME) devices, was realized in both Fe/GaAs and Fe/InAs systems with suitable substrate processing and growth conditions. Furthermore, Fe/InAs was shown to have favorable interface electronic properties as Fe forms a low resistance ohmic contact on InAs. Two prototypes of ME device based on Fe/InAs are also discussed
Magnetization reversal and magnetic anisotropy in Co network nanostructures
The magnetization reversal and magnetic anisotropy in Co network structures have been studied using magneto-optic Kerr effect (MOKE). An enhancement of the coercivity is observed in the network structures and is attributed to the pinning of domain walls by the hole edges in the vicinity of which the demagnetizing field spatially varies. We find that the magnetization reversal process is dominated by the intrinsic unaxial anisotropy (2K(u)/M(s)approximate to 200 Oe) in spite of the shape anisotropy induced by the hole edges. The influence of the cross-junction on the competition between the intrinsic uniaxial anisotropy and the induced shape anisotropy is discussed using micromagnetic simulations
A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain
Water can be a major component of aerosol particles, also serving as a medium for aqueous-phase reactions. In this study, a novel method is presented to calculate the aerosol liquid water content at high relative humidity based on measurements of aerosol hygroscopic growth factor, particle number size distribution and relative humidity in the Haze in China (HaChi) summer field campaign (July–August 2009) in the North China Plain. The aerosol liquid water content calculated using this method agreed well with that calculated using a thermodynamic equilibrium model (ISORROPIA II) at high relative humidity (>60%) with a correlation coefficient of 0.96. At low relative humidity (<60%), an underestimation was found in the calculated aerosol liquid water content by the thermodynamic equilibrium model. This discrepancy mainly resulted from the ISORROPIA II model, which only considered limited aerosol chemical compositions. The mean and maximum values of aerosol liquid water content during the HaChi campaign reached 1.69 × 10−4 g m−3 and 9.71 × 10−4 g m−3, respectively. A distinct diurnal variation of the aerosol liquid water content was found, with lower values during daytime and higher ones at night. The aerosol liquid water content depended strongly on the relative humidity. The aerosol liquid water content in the accumulation mode dominated the total aerosol liquid water content
Production Optimization,Molecular Characterization and Biological Activities of Exopolysaccharides from Xylaria nigripes
The optimal culture conditions of exopolysaccharides (EPS) production in submerged culture medium by Xylaria nigripes were determined using orthogonal matrix method. The optimal medium (per liter) EPS was 60.0 g L–1 maltose, 1.0 g L–1 peptone,
5 mmol L–1 KH2PO4, and initial pH 7.0 at 28 oC. In the optimal culture medium, the maximum EPS production was 11.967 g L–1 in shake flask. Two groups of EPSs (designated as Fr-I and Fr-II) were obtained from the culture filtrates by size exclusion chromatography
(SEC), and their molecular characteristics were examined by a multiangle laser-light scattering (MALLS) and refractive index (RI) detector system. The weight-average molar masses of Fr-I and Fr-II of EPS were determined to be 6.327104 and 1.478104 g mol–1, respectively. The SEC/MALLS analysis revealed that the molecular
formation of Fr-I is of nearly globular shape. Furthermore, the experiments in vitro indicated that X. nigripes EPS exhibited high antioxidative effects though its antitumour activity was limited
Virus-induced gene silencing of TaERECTA increases stomatal density in bread wheat
Barley stripe mosaic virus (BSMV)-based virus induced gene silencing (VIGS) is an effective strategy for rapid determination of functional genes in wheat plants. ERECTA genes are reported to regulate stomatal pattern of plants, and manipulation of TaERECTA (a homologue of ERECTA in bread wheat) is a potential route for investigating stomatal development. Here, the leucine-rich repeat domains (LRRs) and transmembrane domains of TaERECTA were selected to gain BSMV:ER-LR and BSMV:ER-TM constructs, respectively, targeting TaERECTA for silencing in wheat cultivars ‘Bobwhite’ and ‘Cadenza’, to identify the function of TaERECTA on stomatal patterns. The results showed that reduced expression of TaERECTA caused an increased stomatal and epidermal cell density by average 13.5% and 3.3%, respectively, due to the significantly reduced size of leaf epidermal and stomatal cells, and this led to an increase in stomatal conductance. These suggest that modulation of TaERECTA offers further opportunities in stomatal engineering for the adaptation of photosynthesis in wheat
Coupled superconducting qudit-resonator system: Energy spectrum, state population, and state transition under microwave drive
Superconducting quantum multilevel systems coupled to resonators have recently been considered in some
applications such as microwave lasing and high-fidelity quantum logical gates. In this work, using an rf-SQUID
type phase qudit coupled to a microwave coplanar waveguide resonator, we study both theoretically and
experimentally the energy spectrum of the system when the qudit level spacings are varied around the resonator
frequency by changing the magnetic flux applied to the qudit loop. We show that the experimental result can
be well described by a theoretical model that extends from the usual two-level Jaynes-Cummings system to the
present four-level system. It is also shown that due to the small anharmonicity of the phase device a simplified
model capturing the leading state interactions fits the experimental spectra very well. Furthermore we use the
Lindblad master equation containing various relaxation and dephasing processes to calculate the level populations
in the simpler qutrit-resonator system, which allows a clear understanding of the dynamics of the system under
the microwave drive. Our results help to better understand and perform the experiments of coupled multilevel
and resonator systems and can be applied in the case of transmon or Xmon qudits having similar anharmonicity
to the present phase device.This work was supported by the Ministry of Science and Technology of China (Grants No. 2014CB921202, No. 2015CB921104, and No. 2016YFA0300601),the National Natural Science Foundation of China (Grants No. 91321208 and No. 11674380)the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB08-3)S.H. acknowledges support by the US NSF (PHY-1314861)
- …