
PHYSICAL REVIEW B 97, 094513 (2018)

Coupled superconducting qudit-resonator system: Energy spectrum, state population,
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Superconducting quantum multilevel systems coupled to resonators have recently been considered in some
applications such as microwave lasing and high-fidelity quantum logical gates. In this work, using an rf-SQUID
type phase qudit coupled to a microwave coplanar waveguide resonator, we study both theoretically and
experimentally the energy spectrum of the system when the qudit level spacings are varied around the resonator
frequency by changing the magnetic flux applied to the qudit loop. We show that the experimental result can
be well described by a theoretical model that extends from the usual two-level Jaynes-Cummings system to the
present four-level system. It is also shown that due to the small anharmonicity of the phase device a simplified
model capturing the leading state interactions fits the experimental spectra very well. Furthermore we use the
Lindblad master equation containing various relaxation and dephasing processes to calculate the level populations
in the simpler qutrit-resonator system, which allows a clear understanding of the dynamics of the system under
the microwave drive. Our results help to better understand and perform the experiments of coupled multilevel
and resonator systems and can be applied in the case of transmon or Xmon qudits having similar anharmonicity
to the present phase device.
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I. INTRODUCTION

Superconducting qubit and resonator systems [1] are the
key elements of superconducting quantum circuits which have
wide applications in solid-state quantum computing [2–4] and
quantum simulation [5]. For example, quantum nondemolition
measurements of the qubit state can be realized via a coupled
three-dimensional resonator or one-dimensional transmission
line resonator whose transmission/reflection characteristics
depend critically on the qubit state [6–8]. The coupled qubit
and resonator systems, due to their unique properties, have
also emerged as fundamental building blocks of the super-
conducting quantum simulators for the studies of a number
of model Hamiltonians in condensed-matter physics, ranging
from quantum Ising chains [9,10], Holstein polarons [11], to
Mott insulator-superfluid quantum phase transitions [12].

In addition to the qubits, superconducting three-level sys-
tems, namely, qutrits, have been used in many quantum
optics studies [13] such as Autler-Townes splitting (ATS),
electromagnetically induced transparency (EIT), and coherent
population transfer [14–20]. These processes have the potential
for building devices like photon filters, routers, and switches in
various superconducting quantum circuit applications [16,21].
It is interesting to note that ATS and EIT have also been
investigated in the coupled qubit and resonator systems in
which the dressed states of the coupled system are adopted
[22,23].

Recently there are many studies in which the coupled
qutrit- and qudit (i.e., a four-level device) -resonator systems
are involved [24–29]. Yang et al. discussed the generation

of entangled states in the qutrit-resonator system [24]. Peng
and et al. realized experimentally the two-mode correlated
emission lasing in resonators coupled via a fully controllable
superconducting flux qutrit [25]. Hua et al. proposed a con-
trolled phase gate having high fidelity and short operation time
with two superconducting resonators coupled to a transmon
qutrit [26]. The circuit-QED implementations of controlled
phase gate [27] and heralded near-deterministic controlled
Toffoli gate [28] were also proposed based on superconducting
qudits coupled to the resonator. Furthermore, the creation
of N-photon NOON states was realized in the multicoupled
qutrit-resonator system [29]. Note that also more than the
qubit two levels (or qutrit three levels) are found necessary in
explaining the experiments such as ATS [15], geometric phase
realization [30], and a protocol for demonstrating quantum
supremacy [31], and quantum state leakage and transition
out of the qubit subspace are encountered in both the qubit
[32] and qubit-resonator [33] systems. In all these cases, it
is imperative to have an accurate description of the energy
spectrum of the coupled superconducting qutrit- and qudit-
resonator systems when their level spacings are varied in
the vicinity of the resonator frequency, as well as the state
population and transition in response to the microwave driving.
So far, a detailed theoretical treatment and its comparison with
experiment are still lacking.

In this work, we investigate, both theoretically and exper-
imentally, the energy spectrum of the coupled superconduct-
ing four-level qudit-resonator system (the three-level qutrit-
resonator system is naturally included). We use an rf-SQUID

2469-9950/2018/97(9)/094513(13) 094513-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.094513&domain=pdf&date_stamp=2018-03-26
https://doi.org/10.1103/PhysRevB.97.094513


LIU, XU, SU, LI, TIAN, HAN, AND ZHAO PHYSICAL REVIEW B 97, 094513 (2018)

FIG. 1. (a) Schematic of the coupled rf-SQUID type phase qudit
(red) and resonator (blue) system. The qudit has a Josephson critical
current Ic, shunt capacitance Cq , and loop inductance Lq while
the resonator is characterized by its effective inductance Lr and
capacitance Cr . They are coupled by a capacitance Cc. The flux
bias provides both dc and rf components of �ext = �dc + �rf(t).
(b) Energy potential and level diagram of a superconducting phase
qudit. (c) Energy-level diagram of a resonator.

type phase qudit so its level spacings can be conveniently tuned
by changing the applied magnetic flux bias [see Fig. 1(a)].
The experimental spectra are measured with increasing mi-
crowave power so that multiphoton processes are involved
and populations up to the third-excited level are detected [see
Fig. 1(b)]. We show that the calculated energy spectra from a
theoretical model taking account of the multilevel structure of
the qudit-resonator system agree well with the experimental
results. We then consider a simplified model based on the
small anharmonicity of the phase type device, which provides
a straightforward picture of the state interactions and also a
good fit to the experimental data. Furthermore, we use the
Lindblad master equation containing various relaxation and
dephasing processes to calculate the population at each energy
level of the qutrit-resonator system, which allows a clear
understanding of the dynamics of the system under microwave
driving. Finally, we present examples that our results can help
to better understand and perform some experiments of the
coupled multilevel and resonator systems.

In the following, we will first present our theoretical formu-
lation (Sec. II) and a description of the experiment (Sec. III),
followed by the results and discussions of the experiment
and numerical calculations (Sec. IV). The final section V
summarizes our main findings.

II. THEORY

The Hamiltonian of the coupled qudit-resonator system
subject to a microwave field [see Fig. 1(a) for the definition
of various system parameters] can be written as

H = Hq + Hr + Hc

= H 0
q − �q�rf(t)/Lq + Hr + Hc

= H0 − �q�rf(t)/Lq, (1)

with the subscripts q, r , and c denoting the qudit, the resonator,
and their coupling, respectively. In Eq. (1),�q is the qudit’s flux
variable and we separate the time-dependent microwave drive
�rf(t) = A cos(ωt) term of −�q�rf(t)/Lq from Hq so that in
the absence of microwave drive the qudit-resonator system’s
Hamiltonian H0 = H 0

q + Hr + Hc is time independent.
Details of the derivation and further discussion are presented

in Appendix A. In short, by introducing the creation and
annihilation operators for the qudit, its Hamiltonian H 0

q , which
has an anharmonic cubic potential, can be written as (h̄ = 1
will be used hereafter for simplicity)

H 0
q = ωq

(
a†

qaq + 1
2

) + η(a†
q + aq)3, (2)

where ωq is the Josephson plasma frequency and η is a small
quantity compared to ωq . H 0

q can be diagonalized to obtain
the qudit energy levels En corresponding to the eigenstates
|n〉q (n = 0,1,2, . . .), as shown in Fig. 1(b). Similarly, the
Hamiltonian of the resonator can be written as

Hr = ωr

(
a†

r ar + 1
2

)
, (3)

where ωr is the resonator frequency, with the energy lev-
els εn = ωr (n + 1/2) corresponding to the Fock states |n〉r
(n = 0,1,2, . . .) as shown in Fig. 1(c). Finally the interaction
Hamiltonian reads

Hc = g(a†
qar + a†

r aq), (4)

where g is the qudit-resonator coupling strength.
The total Hamiltonian H0 = H 0

q + Hr + Hc of the qudit-
resonator system, without the microwave drive, is written in
Eq. (A10) in the matrix form in the subspace spanned by bases
{|00〉, |01〉, |10〉, |02〉, |11〉, |20〉, |03〉, |12〉, |21〉, |30〉}, where
|mn〉 ≡ |m〉r |n〉q . We note that all of the nonzero off-diagonal
elements in Eq. (A10) contain the parameter α = η/ωq . For
the qudit with small anharmonicity, we have α � 1, so the
system Hamiltonian H0 in Eq. (A10) is approximated as

FIG. 2. Energy-level diagram of the coupled qudit and resonator
system. The levels are shown for three different resonant cases
of ω10 = ωr (one-photon), ω20 = 2ωr (two-photon), and ω30 = 3ωr

(three-photon), respectively.
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α → 0 to be

H ′
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0 + E0 0 0 0 0 0 0 0 0 0

0 ε0 + E1 g 0 0 0 0 0 0 0

0 g ε1 + E0 0 0 0 0 0 0 0

0 0 0 ε0 + E2

√
2g 0 0 0 0 0

0 0 0
√

2g ε1 + E1

√
2g 0 0 0 0

0 0 0 0
√

2g ε2 + E0 0 0 0 0

0 0 0 0 0 0 ε0 + E3

√
3g 0 0

0 0 0 0 0 0
√

3g ε1 + E2 2g 0

0 0 0 0 0 0 0 2g ε2 + E1

√
3g

0 0 0 0 0 0 0 0
√

3g ε3 + E0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Equation (5) captures the most fundamental interactions
among the basis states of the system as shown in Fig. 2, which
will be discussed below.

For the master equation simulation, we take into account the
time-dependent Hamiltonian H ′ = H ′

0 − �q�rf(t)/Lq . For
simplicity and without loss of generality, the simpler qutrit-
resonator system with 6×6 Hamiltonian matrix spanned in the

smaller subspace spanned by |00〉, |01〉, |10〉, |02〉, |11〉, |20〉
will be considered, whose detailed discussion is given in Ap-
pendix B. Denoting various qutrit-microwave and resonator-
microwave detunings as �p = ω10 − ω, �c = ω21 − ω, �r =
ωr − ω, where ωij = Ei − Ej is the qutrit level spacings,
and performing a rotating-wave approximation to drop terms
oscillating with frequency 2ω, we arrive at

H RWA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 �/
√

2 0 0 0 0

�/
√

2 �p g � 0 0

0 g �r 0 �/
√

2 0

0 � 0 �p + �c

√
2g 0

0 0 �/
√

2
√

2g �p + �r

√
2g

0 0 0 0
√

2g 2�r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

in which � = χ0/2, and χ0 is defined from −�q�rf(t)/Lq =
χ (t)(a†

q + aq)/
√

2 and χ (t) = χ0 cos(ωt). Equation (6) indi-
cates that in addition to the state-to-state interactions given in
Eq. (5) and Fig. 2, the microwave further introduces couplings
between the |00〉 and |10〉, |10〉 and |20〉, and |01〉 and |11〉
states with coupling strengths proportional to �.

The Lindblad master equation has the usual form:

ρ̇ = −i[H RWA,ρ] +
∑

l

D[Al]ρ, (7)

where ρ is the density matrix of the coupled qutrit-resonator
system and D[Al]ρ is the Lindblad operators containing
various relaxation and dephasing processes:

D[Al]ρ = (2AlρA
†
l − A

†
l Alρ − ρA

†
l Al)/2. (8)

The operators Al can generally be written as Aij=√
γij |j 〉〈i|,

Aϕi = √
2γϕi |i〉〈i|, and Aκ = √

κar for the qutrit energy
relaxation, dephasing, and photon decay in the resonator,
respectively. Here γij denotes the relaxation rate from qutrit
level i to level j and γϕi is the dephasing rate of qutrit level
i. Explicit expressions for these operators can be found in
Appendix B.

III. EXPERIMENT

In the present work, we used an Al-junction-based rf-
SQUID type phase qudit [34,35] which was coupled to a
coplanar waveguide (CPW) resonator, as is shown schemat-
ically in Fig. 1. The qudit was described by three parameters:
the junction’s critical current Ic and capacitance Cq , and the
SQUID loop inductance Lq . The CPW resonator had the
effective parameters of capacitance Cr and inductance Lr , with
a coupling capacitor Cc connecting to the qudit. The flux bias
provided both dc and rf components of �ext = �dc + �rf(t)
for tuning the qudit level spacings and performing the state
manipulation, respectively. The three-junction dc-SQUID was
used for the qudit state readout. The sample was mounted on an
oxygen-free copper platform thermally anchored to the mixing
chamber of an Oxford cryogen-free dilution refrigerator which
was cooled to T ≈ 10 mK. The qudit control and measurement
circuit included various filtering, attenuation, and amplifica-
tion, and a trilayer μ-metal shield was used outside the outer
vacuum chamber of the refrigerator [36–38].

The resonator had a measured fundamental frequency of
fr = ωr/2π = 6.205 GHz, and the qudit-resonator coupling
strength was g/2π ∼ 18 MHz. In the experiment, we changed
the flux bias such that the qudit level spacings vary in the
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TABLE I. The measured relaxation, dephasing, and decay rates
for the phase qutrit-resonator system at the flux bias of �dc =
0.7053 �0 [40,41].

Parameter γ10 (s−1) γ21 (s−1) γϕ1 (s−1) γϕ2 (s−1) κ (s−1)

2.8×106 5.1×106 8.1×106 16.2×106 3.5×105

vicinity of ωr and its energy spectra from single- or multi-
photon excitation were traced out under increasing microwave
power. By fitting the theoretical results to the experimental
data, the qudit parameters in Fig. 1(a) were adjusted around
designed values [39] and found to be Ic = 1.21 μA, Cq =
1280 fF, Lq = 814 pH, while the resonator had the parameters
Cr = 809 fF, Lr = 808 pH, and Cc = 5.5 fF considering
ωr = 1/

√
LrCr and Z0 = (π/2)

√
Lr/Cr = 50 �. The corre-

sponding Josephson energy and charging energy of the phase
device are EJ ≈ 601 GHz and EC ≈ 15 MHz, respectively.

For the master equation simulation, we measured the relax-
ation and dephasing rates at a given flux bias �dc = 0.7053
�0 with level spacings of f10 = ω10/2π = 5.555 GHz and
f21 = ω21/2π = 5.393 GHz, which were away from fr . The
measured energy relaxation times in this case were T10 =
1/γ 10 = 353 ns and T21 = 1/γ21 = 196 ns, respectively, while
the dephasing time determined from Ramsey interference
experiment was Tϕ1 = 1/γϕ1 = 124 ns [40]. The time decay
of the photon state in the resonator was also measured, which
leads to a Tr = 1/κ = 2.866 μs. These relaxation and decay
rates, which were used in the master equation simulations, are
summarized in Table I [41].

IV. RESULTS AND DISCUSSIONS

To measure the energy spectrum of the coupled qudit-
resonator system, we apply a continuous single-tone mi-
crowave, namely, a microwave pulse with duration much
greater than T1. For a given level of microwave power, the
dc flux bias and the microwave frequency in the neighborhood
of the resonator frequency fr are varied while the populations
at the qudit excited states are monitored. The magnitude of
the readout pulse is chosen such that the population of all the
excited states (P1 + P2 + P3) except that of the ground state
(P0) is measured. Figures 3(a)–3(c) show the measured results
at three different microwave power levels. In Fig. 3(a), with
low microwave power, the familiar avoided crossing is seen,
which results from the dressed states formed from |0〉r |1〉q
and |1〉r |0〉q when the qudit level spacing ω10 is varied in
the neighborhood of the resonator frequency ωr (see Fig. 1
for the uncoupled state labeling). Here only the first excited
states of the qudit and resonator are involved at low microwave
power. As the microwave power is increased, it can be seen in
Fig. 3(b) that more spectral lines appear, as indicated by the
white arrows. These spectral lines should arise from certain
dressed states formed by different higher-excited uncoupled
qudit-resonator states. In this case, the avoided crossing is
located at a different qudit flux bias compared to that in
Fig. 3(a). As is shown in Fig. 3(c), still new spectral lines
appear, pointed out again by the white arrows, when the
microwave power is further increased.

A. Energy spectrum of the qudit-resonator system

To understand how each of the spectral lines in Figs. 3(a)–
3(c) forms and their origins, we calculate the eigenenergy
levels and eigenvectors by solving the eigenvalue equation
of the coupled qudit-resonator system, in which the applied
microwave field is first disregarded as mentioned above.
In Figs. 3(d)–3(f), we show the calculated energy spectra
(solid lines) using the Hamiltonian H0 in Eq. (A10) and the
qudit-resonator parameters discussed above. In Fig. 3(d), the
peak position of the experimental spectral lines in Fig. 3(a)
(pointed out by two downward arrows) are plotted as solid
squares, which agree very well with the calculated results.
As discussed above, these spectral lines are from the dressed
states of the uncoupled |0〉r |1〉q and |1〉r |0〉q when the qudit
level spacing ω10 varies in the neighborhood of the resonator
frequencyωr . The downward-arrow pointed experimental lines
in Figs. 3(b) and 3(c) with increasing microwave powers are
also plotted as symbols in Figs. 3(e) and 3(f), respectively.
The two upward-arrow pointed lines in Figs. 3(b) and 3(c)
are found to be a single spectrum appearing under different
microwave powers and, from the comparison between the data
and numerical calculation discussed below, should be grouped
into one spectral line in Fig. 3(e) (middle spectrum represented
by the symbols).

The solid lines in Figs. 3(e) and 3(f) are the calculated
energy levels using H0, but with the magnitudes divided by 2
and 3, respectively. We see that the experimental data are fitted
very well by the respective calculated results, which indicates
that the experimental spectral lines in Figs. 3(b) and 3(c)
pointed out by the arrows result from two- and three-photon
processes with increasing microwave powers, respectively.

From the previously determined system parameters we find
that the calculated coefficient η in the anharmonic term in
Eq. (2) is small compared to the harmonic term ωq . At the flux
bias of �dc = 0.6810 �0, for instance, we have the calculated
η/2π ≈ 91.5 MHz and ωq/2π ≈ 6.29 GHz, which lead to the
parameter α = η/ωq ∼ 0.015. The qudit-resonator coupling
strength g/2π is calculated to be 17.3 MHz, which is much
smaller compared to both ωq and ωr . With these parameters,
we find that the calculated spectra using the approximated
Hamiltonian H ′

0 (as α → 0) given by Eq. (5), when plotted
also in Fig. 3, are almost indistinguishable from the solid
lines calculated using H0 [slight difference only visible in
some parts of the lines in Fig. 3(f)], which indicates a good
approximation of H0 by H ′

0 for the present qudit device with
small anharmonicity.

The Hamiltonian H ′
0 in Eq. (5) provides a clear physical

picture of the main interactions in the coupled qudit-resonator
system. In Fig. 2, we show the energy-level diagram of the
system with the interactions in the limit of α → 0. The levels
are aligned in the single-, two-, and three-photon resonant
cases of ω10 = ωr, ω20 = 2ωr , and ω30 = 3ωr , where the qudit
level spacings increase as the dc flux bias decreases toward
0.5 �0. With this, the observed qudit-resonator spectral lines
in Figs. 3(a)–3(c) can be explained with a good approximation
as follows. In Fig. 3(d), the dressed spectral lines (soild lines)
result from the interaction of the |1〉r |0〉q (dashed line) and
|0〉r |1〉q (dotted line) bare states with the coupling strength
of g/π as symbolized by a circle in the figure. Similarly,
in Fig. 3(e), the dressed spectral lines (soild lines) resulting
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FIG. 3. Left panels: Experimental spectroscopic scans as a function of flux bias for three microwave driving powers. (a) −100 dBm;
(b) −95 dBm; (c) −70 dBm. Right panels: Dressed state energy levels. Experimental (symbols) and theoretical (solid lines) spectral lines
involving the first (d), the second (e), and the third (f) excited states of the qudit and resonator system shown in Fig. 2. Experimental data are
taken from the spectra in (a)–(c) while the theoretical ones in (e) and (f) are the calculated results divided by a factor of 2 and 3, respectively. Note
that the horizontal scales are different in (d), (e), and (f). The straight broken lines show the uncoupled qudit and resonator levels as indicated.
The circle, squares, upward triangles, and downward triangle indicate the nearby bare state interaction strengths of g/π,

√
2g/π,

√
3g/π , and

2g/π , respectively (see Fig. 2). Single and double arrows indicate weaker interactions between two states via one and two intermediate states,
respectively.

from the interactions between the |2〉r |0〉q (dashed line) and
|1〉r |1〉q (dotted line) bare states, and between the |1〉r |1〉q
(dotted line) and |0〉r |2〉q (dashed-dotted line) bare states have
the coupling strength of

√
2g/π as indicated by two squares.

A common feature of these results is that each bare states
pair forming the dressed state splitting has direct interactions
within the pair, namely, the states within the pair are linked by
single-photon transitions, which can be seen clearly in Eq. (5)
and Fig. 2.

The avoided crossing indicated by the arrow in Fig. 3(e) has
a smaller splitting that seems to originate from the interaction
between the |2〉r |0〉q (dashed line) and |0〉r |2〉q (dotted line)
bare states. However, in addition to its small size, the splitting
is different since there is no single-photon transition linking
the two bare states. To further explain the result, we consider
the 3×3 submatrix in Eq. (5) spanned in the |02〉, |11〉, |20〉
subspace (namely, in the 4th–6th rows and columns). If we look
at the particular flux bias indicated by the arrow in Fig. 3(e),
the three eigenvalues of the submatrix are found to be a and
(a + b ± δ)/2, where a = ε0 + E2 = ε2 + E0, b = ε1 + E1,
and δ =

√
(a − b)2 + 16g2. The corresponding eigenvectors

are [−1 0 1] and [1 (b − a ± δ)/2
√

2g 1] (unnormalized),

respectively. Hence one of the dressed state energies equals
that of the |0〉r |2〉q and |2〉r |0〉q bare states at their degeneracy
point, while the other two locate at the points shifted upward
and downward, respectively, by an amount of δ/2 from the
average value of the bare state energies a and b. The normalized
eigenvectors can be written explicitly as [0.350 0.869 0.350],
[−0.707 0 0.707], and [0.614 −0.495 0.614] for the three
dressed states with decreasing energies in Fig. 3(e). The
dressed state with highest energy is therefore a superposition
of three bare states |0〉r |2〉q, |1〉r |1〉q , and |2〉r |0〉q , with a
prevailing contribution from the |1〉r |1〉q state of 75.5%. While
the middle dressed state is a superposition of the |0〉r |2〉q and
|2〉r |0〉q states, the lowest one still has a 24.5% contribution
from the |1〉r |1〉q state, which is therefore involved in the small
splitting seemingly originating from the |2〉r |0〉q and |0〉r |2〉q
states due to the absence of single-photon linkage between
them. As a comparison, the three dressed-state eigenvectors
at the flux biases corresponding to the left and right avoided
crossings indicated by the two squares in Fig. 3(e), arranged
with decreasing energies, are [0.662 0.734 0.152], [−0.746
0.628 0.218], [0.065 −0.258 0.964] and [0.661 0.734 0.154],
[0.747 −0.626 −0.223], [0.067 −0.263 0.963], respectively.
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FIG. 4. Calculated spectra a function of flux bias at the microwave
driving powers of (a) �/2π = 1.1 MHz and (b) �/2π = 3.5 MHz.
The arrow in (a) indicates the resonant point. Three vertical dashed
lines in (b) indicate the cuts at flux biases of �dc = 0.6766, 0.6786,
and 0.6806 �0, respectively.

So the dressed-state pair at the left (right) avoided crossing
has an overwhelming contribution of >95% from their cor-
responding bare states of |1〉r |1〉q and |0〉r |2〉q (|2〉r |0〉q and
|1〉r |1〉q).

Similar explanations can also be made for the data in
Fig. 3(f), in which four higher-excited bare states are involved
and three single-photon linkages with two different strengths of√

3g/π and 2g/π (see Fig. 2) lead to the three splittings that are
indicated by up and down triangles, respectively. Two smaller
splittings, indicated by two single arrows, result approximately
from interactions taking account of an additional third bare
state, similar to the result discussed above for Fig. 3(e). In
Fig. 3(f), the smallest splitting indicated by the double arrows
originates from the interactions where a fourth bare state needs
to be considered.

B. Master equation solutions

In order to have a better understanding of the level popula-
tion distribution and the intensity of the experimental spectral
lines in Figs. 3(a)–3(c), we take into account the microwave
field applied in the measurement as well as various relaxation,
dephasing, and decay processes, considering the simpler qutrit-
resonator system as an example. Such a dynamical system
can be described in terms of the Lindblad master equation,
from which it is possible to discuss the contributions from
different energy-level populations to the spectral lines shown
in Figs. 3(a)–3(c) (note that all the excited-states populations
are measured in the experimental data).

In Fig. 4 we show the calculated qutrit excited-states
population P1 + P2 using the relaxation, dephasing, and decay
parameters listed in Table I. It can be seen that the results

FIG. 5. Calculated spectra at the microwave driving powers of
�/2π = 3.5 MHz (lines). (a) �dc = 0.6766 �0, (b) �dc = 0.6786�0,
and (c) �dc = 0.6806�0, corresponding to the three cuts in Fig. 4(b).
Symbols are the experimental data measured at microwave power of
−95 dBm.

in Fig. 4(a) reproduce very well the experimental data in
Fig. 3(a). With a similar factor of the microwave power
increase, the numerical results in Fig. 4(b) also reproduce those
in Fig. 3(b), indicating a good agreement between the theory
and experiment. A slight difference in the latter case is that
the experimental spectral line at a higher microwave power
level shown in Fig. 3(c) and pointed out by an upward arrow
starts to appear (though not clearly) in the calculated spectra
in Fig. 4(b) at the lower microwave power level.

The result in Fig. 4(a) is calculated at a low microwave
power level where single-photon excitation is involved. In
this case, the population P2 at the second-excited state is
approximately zero and for the data at the center of avoided
crossing, as pointed out by an arrow, the dressed states are the
equal superpositions of the bare states |1〉r |0〉q and |0〉r |1〉q .
The spectral line is therefore composed of two peaks with equal
height and width. Away from the avoided crossing, the height
and width of the two peaks will change in opposite directions,
with one peak evolving to the |1〉r |0〉q state showing decreasing
qutrit population P1 while the other to the |0〉r |1〉q state
showing increasing P1 [see Fig. 3(d)]. These are confirmed
by the master equation simulations, from which it is also seen
that the process as well as the line shapes is influenced by the
coherence times of the coupled qutrit-resonator system.

The solid lines in Fig. 5 from (a) to (c) are the data in
Fig. 4(b) along the three cuts indicated by the vertical dashed
lines from left to right, respectively, while symbols are the
corresponding experimental results in Fig. 3(b). The dashed
lines are the calculated second-excited-state population P2.
The three cuts correspond to the positions of the three avoided
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crossings denoted by the left square, the arrow, and the right
square in Fig. 3(e). At this higher microwave power level, we
see that P2 has significant contributions at certain frequencies
resulting from the two-photon excitation. The spectral peaks
from the single-photon excitation discussed above become
higher and broader under higher microwave power driving.
These peaks, as indicated by upward arrows in Fig. 5, still
have predominant P1 (also P0; note that P0 + P1 + P2 = 1)
contributions, with the ratio P2/(P1 + P2) below 0.03. Other
peaks are contributed by P1, P2, and also P0 of the dressed
states formed by the bare states |2〉r |0〉q, |1〉r |1〉q , and |0〉r |2〉q
as shown in Fig. 3(e). We point out that when the system’s
coherence times increase, the spectral peaks will become
sharper, namely, their height and width will increase and
decrease, respectively.

C. Applications

There are a number of studies in which the coupled qutrit-
resonator or qudit-resonator systems are involved [24–29,33].
Our results can provide better understanding and control of the
experiments. For instance, the creation of N -photon NOON
states was studied in a coupled qutrit-resonator system [29]. In
this experiment, two qutrits q1 and q2 are both coupled to a bus
resonator C while they are individually coupled to the storage
resonators A and B, respectively. The NOON states in A and
B with N up to 3 are experimentally demonstrated. We show
that the preparation of such states can be visualized and better
controlled with the help of our results such as those shown in
Figs. 2 and 3.

The NOON state preparation with arbitrary N starts by
exciting q1 to its first excited state, which is then half-swapped
to C by bringing them into resonance. This process follows
basically a route in Fig. 2 from |00〉 to |01〉 (excitation, off
resonance) and then to |10〉 (swap, on resonance), with the
swap being performed at the point indicated by the circle in
Fig. 3(d). After this, q1 is set off resonance while q2 is brought
to resonance with C and the state in C is fully swapped to q2,
thus generating a Bell state in the coupled q1 and q2. Then,
for the N = 3 NOON state, each qutrit goes through a route
from |01〉 to |02〉 (excitation, off resonance) to |11〉 (swap, on
resonance) to |12〉 (excitation, off resonance) to |21〉 (swap, on
resonance) in Fig. 2, with the two swaps performed at the points
indicated by the left square in Fig. 3(e) and down triangle in
Fig. 3(f), respectively. Finally both qutrits follow the route from
|21〉 to |30〉 in Fig. 2 by swapping at the point indicated by the
right up triangle in Fig. 3(f), thus creating the N = 3 NOON
state. In this experiment, suitable qutrits bias points can be
easily known from Figs. 3(d)–3(f) and state coupling strength
from Fig. 2, which is critical for determining the swap time.

The coupled qubit-resonator system is often used for the
quantum state measurement [6–8]. Very recent works have
found that such measurements can induce state transitions
out of the two-level subspace of the qubit if the measurement
microwave power (or the number of photons) in the resonator
is increased to a high level [33]. The excitation to the fifth-
excited states was observed and explained using the Jaynes-
Cummings model with terms usually ignored in the rotating-
wave approximation. Within our theoretical framework, a
reverse process can readily be considered: What will be the

FIG. 6. Calculated average photon number N in the resonator ver-
sus qudit flux bias and microwave frequency at the microwave powers
of (a) �/2π = 1.1 MHz and (b) �/2π = 3.5 MHz, corresponding
to those in Fig. 4. Inset shows the probabilities P̃1 and P̃2 with one
and two photons in the resonator along the dashed line in (a). Note
that N = P̃1 + 2P̃2 (see Appendix B).

photon number in the resonator when the qutrit or qudit is
driven with increasingly higher microwave power? In Fig. 6,
we show the calculated results of the average photon number
N in the resonator (see Appendix B) versus qudit flux bias and
microwave frequency at two microwave powers of �/2π =
1.1 and 3.5 MHz, which correspond to the power levels in
Fig. 4. In the case of Fig. 6(a), it can be seen that although
the microwave is applied directly to the qudit only, there will
be considerable excitation of photons in the resonator when
the microwave frequency is near the frequencies of both the
resonator (ωr ) and qudit (ω10).

This may not be surprising since the qudit and resonator
form a coupled system. In the inset of Fig. 6, we show the
probabilities P̃1 and P̃2 of having one and two photons in
the resonator at a flux bias of �dc = 0.6770�0 [along the
dashed line in Fig. 6(a)]. Note that N = P̃1 + 2P̃2. P̃1 shows
two peaks near ωr and ω10 while P̃2 has one peak near ωr .
In Fig. 6(b), more photon spectral lines can be seen as the
microwave power increases. In this case, more qudit energy
levels and multiphoton processes are involved.

V. SUMMARY

We systematically studied the energy spectrum of the
coupled superconducting phase qudit-resonator system where
the qudit level spacings were varied around the resonator
frequency by changing the applied magnetic flux bias. The ex-
perimental spectra were measured with increasing microwave
power so that the emergence of multiphoton processes were
clearly observed and populations up to the third-excited
level of the qudit were detected. Using the experimentally
determined sample parameters, the calculated spectra of the
qudit-resonator system fitted the experimental data very well.
In particular, due to the small anharmonicity of the phase device
a simplified theoretical model capturing the leading-order
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qudit-resonator interactions was proposed to account for the
experimental results. The Lindblad master equation was also
used to calculate the level populations for the case of the
qutrit-resonator system, which provided a detailed description
of the dynamics of the system under the microwave excitation.
These results are useful to understand and perform experiments
in coupled multilevel-resonator systems, and are also applica-
ble to artificial atoms with weak anharmonicity such as the
transmon and Xmon devices.
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APPENDIX A: THE EIGENVALUE PROBLEM OF THE QUDIT-RESONATOR SYSTEM

The Hamiltonian of the coupled qudit-resonator system (see Fig. 1 for various parameters and symbols) can be written as

H = Hq + Hr + Hc (A1)

with the subscripts q, r , and c denoting the qudit, the resonator, and their coupling, respectively:

Hq = 1

2

Q2
q

C ′
q

+ (�q − �ext)2

2Lq

− EJ cos

(
2π

�q

�0

)

≈ 1

2

Q2
q

C ′
q

+ (�q − �dc)2

2Lq

− EJ cos

(
2π

�q

�0

)
− �q�rf (t)

Lq

≡ H 0
q − �q�rf (t)

Lq

, (A2)

Hr = 1

2

Q2
r

C ′
r

+ �2
r

2Lr

, (A3)

Hc = QqQr

C ′
c

, (A4)

in which �0 is the flux quantum,EJ = (�0/2π )Ic,�rf(t) = A cos(ωt) represents the applied microwave field with ω being the
microwave frequency, and �q,r and Qq,r are the canonically conjugate variables. In particular, they represent the flux and charge
in the case of the qudit. C ′

q , C ′
r , and C ′

c are defined by

C ′
q = (CrCc + CcCq + CqCr )/(Cr + Cc),

C ′
r = (CrCc + CcCq + CqCr )/(Cq + Cc),

C ′
c = (CrCc + CcCq + CqCr )/Cc.

It can be seen that as Cc → 0, we have C ′
q → Cq , C ′

r → Cr , and C ′
c → CqCr/Cc. Now we consider the time-independent

part of the Hamiltonian:

H0 = H 0
q + Hr + Hc. (A5)

Expanding the qudit potential as Taylor series around the local minimum, H 0
q in Eq. (A2) can be written as [15]

H 0
q = 1

2

Q2
q

C ′
q

+ �2
q

2L∗
J

+ �3
q

2�0L∗ (A6)

where

L∗
J = LJ /λ,

L∗ = 3Lq/π (2λ + ξ ),

λ = [2 + π (1 − 4�dc/�0)β−1 + β−2]1/2,

ξ = 4π�dc/�0 − 2β−1 − π,
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with LJ = �0/(2πIc) and β = (2πLqIc)/�0. Introducing the creation and annihilation operators a
†
q and aq for the harmonic

part of Eq. (A6), defined by

�q =
√

1

2C ′
qωq

(a†
q + aq), Qq =

√
C ′

qωq

2
(a†

q − aq),

where ωq =
√

1/L∗
J C ′

q is the Josephson plasma frequency, we can write the Hamiltonian of the qudit as

H 0
q = ωq

(
a†

qaq + 1
2

) + η(a†
q + aq)3, (A7)

where η = (1/2C ′
qωq)3/2/2�0L

∗. The qudit Hamiltonian H 0
q in Eq. (A7) can be diagonalized, which leads to the bottom four

eigenvalues of E0 = ωq/2 − 11η2/ωq , E1 = 3ωq/2 − 71η2/ωq , E2 = 5ωq/2 − 191η2/ωq , and E3 = 7ωq/2 − 371η2/ωq .
In a similar way, using the creation and annihilation operators:

�r =
√

1

2C ′
rωr

(a†
r + ar ), Qr =

√
C ′

rωr

2
(a†

r − ar ),

the Hamiltonian of the resonator can be written as

Hr = ωr

(
a†

r ar + 1
2

)
, (A8)

where ωr = √
1/LrC ′

r . Finally the interaction Hamiltonian reads

Hc = g(a†
qar + a†

r aq), (A9)

where g = √
ωqC ′

q/2
√

ωrC ′
r/2/C ′

c is the coupling strength. In the present experiment the measured energy spectra of the
coupled system show the spectral lines of the dressed states resulting from up to the third-excited states of both the qudit and
resonator components. To explain these results we write the time-independent Hamiltonian H0 in the matrix form in the subspace
{|00〉, |01〉, |10〉, |02〉, |11〉, |20〉, |03〉, |12〉, |21〉, |30〉}, with the two indices in each base vector denoted for the eigenstates of
Hr and H 0

q , respectively:

H0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0 + E0 0 −3αg 0 3α2g

0 ε0 + E1
(
1 + 116

3 α2
)
g 0 −9αg

−3αg
(
1 + 116

3 α2
)
g ε1 + E0 3

√
2αg 0

0 0 3
√

2αg ε0 + E2
(√

2 + 560
3

√
2α2

)
g

3α2g −9αg 0
(√

2 + 560
3

√
2α2

)
g ε1 + E1

0 0 −3
√

2αg 0
(√

2 + 116
3

√
2α2

)
g

0 0 −11
√

6α2g 0 3
√

6αg

−√
2αg −36

√
2α2g 0 −15αg 0

0 0 3
√

2α2g 0 −9
√

2αg

0 0 0 0 0

0 0 −√
2α 0 0

0 0 −36
√

2α2g 0 0

−3
√

2αg −11
√

6α2g 0 3
√

2α2g 0

0 0 −15αg 0 0(√
2 + 116

3

√
2α2

)
g 3

√
6αg 0 −9

√
2αg 0

ε2 + E0 0 3
√

2αg 0 −3
√

3αg

0 ε0 + E3
(√

3 + 1660
3 α2

)
g 0 0

3
√

2αg
(√

3 + 1660
3 α2

)
g ε1 + E2

(
2 + 1120

3 α2
)
g 0

0 0
(
2 + 1120

3 α2
)
g ε2 + E1

(√
3 + 116

3

√
3α2

)
g

−3
√

3αg 0 0
(√

3 + 116
3

√
3α2

)
g ε3 + E0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A10)

where εn = ωr (n + 1/2) and α = η/ωq . The eigenvalues of the coupled qudit-resonator system can be obtained by solving
Eq. (A10).
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APPENDIX B: THE LINDBLAD MASTER EQUATION

The Lindblad master equation has the form

ρ̇ = −i[H,ρ] +
∑

l

D[Al]ρ, (B1)

where ρ is the density matrix of the coupled qutrit-resonator system, H is the total Hamiltonian including the time-dependent
driving microwave term,

H = H0 − �q�rf (t)/Lq, (B2)

and D[Al]ρ is the Lindblad operators containing various relaxation and dephasing processes:

D[Al]ρ = (2AlρA
†
l − A

†
l Alρ − ρA

†
l Al)/2. (B3)

The second term on the right-hand side of Eq. (B2) can be written as −�q�rf(t)/Lq = χ (t)(a†
q + aq)/

√
2 with

χ (t) = −�rf(t)

L

√
1

C ′
qωq

= χ0 cos(ωt). (B4)

To discuss the qutrit we restrict ourselves in the subspace {|00〉, |01〉, |10〉, |02〉, |11〉, |20〉} and replace H0 with H ′
0 given in

Eq. (5) so the Hamiltonian H becomes H ′ = H ′
0 − �q�rf (t)/Lq , which is expressed in the 6×6 matrix form:

H ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 χ/
√

2 0 0 0 0

χ/
√

2 ω10 g χ 0 0

0 g ωr 0 χ/
√

2 0

0 χ 0 ω10 + ω21

√
2g 0

0 0 χ/
√

2
√

2g ωr + ω10

√
2g

0 0 0 0
√

2g 2ωr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B5)

in which ω10 = E1 − E0 and ω21 = E2 − E1. If we perform a unitary transformation

H ′′ = U †H ′U − i(∂U †/∂t)U (B6)

with

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 e−iωt 0 0 0 0

0 0 e−iωt 0 0 0

0 0 0 e−i2ωt 0 0

0 0 0 0 e−i2ωt 0

0 0 0 0 0 e−i2ωt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B7)

which brings the system to a doubly rotating reference frame with frequencies of ω and 2ω, we have

H ′′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
(
1+ei2ωt

)
χ0/2

√
2 0 0 0 0(

e−i2ωt +1
)
χ0/2

√
2 ω10 − ω g

(
1+ei2ωt

)
χ0/2 0 0

0 g ωr − ω 0
(
1+ei2ωt

)
χ0/2

√
2 0

0
(
e−i2ωt +1

)
χ0/2 0 (ω10+ω21) − 2ω

√
2g 0

0 0
(
e−i2ωt +1

)
χ0/2

√
2

√
2g (ωr + ω10) − 2ω

√
2g

0 0 0 0
√

2g 2ωr − 2ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(B8)
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Furthermore, if we define �p = ω10 − ω, �c = ω21 − ω, �r = ωr − ω, and perform a rotating-wave approximation to drop
terms oscillating with frequency 2ω, we arrive at

H RWA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 �/
√

2 0 0 0 0

�/
√

2 �p g � 0 0

0 g �r 0 �/
√

2 0

0 � 0 �p + �c

√
2g 0

0 0 �/
√

2
√

2g �p + �r

√
2g

0 0 0 0
√

2g 2�r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B9)

in which � = χ0/2.
The operators Al in Eq. (B3) can generally be written as Aij = √

γij |j 〉〈i|, Aϕi = √
2γϕi |i〉〈i|, and Aκ = √

κar for the qutrit
energy relaxation, dephasing, and photon decay in the resonator, respectively. Here γij denotes the relaxation rate from qutrit level
i to level j and γϕi is the dephasing rate of qutrit level i. These parameters are all related to the experimentally measurable ones
through γ10 = 1/T10, γ21 = 1/T21, γϕ1 = 1/Tϕ1, γϕ2 = 1/Tϕ2, κ = 1/Tr . The operators Al for these processes can therefore be
written in the matrix form as

A10 = √
γ10

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (B10)

A21 = √
γ21

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (B11)

Aϕ1 = √
γϕ1

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (B12)

Aϕ2 = √
γϕ2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (B13)

Aκ = √
κ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 0 0 0 1 0

0 0 0 0 0
√

2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (B14)

We note that in Eq. (B10) there are two nonzero matrix elements, which correspond to the cases when the resonator is in the
zero- or one-photon state. In Eq. (B11) the second nonzero element corresponding to the one-photon state of the resonator does
not appear due to the smaller subspace we have considered. A similar situation occurs for Eqs. (B12) and (B13), respectively.
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In the same subspace {|00〉, |01〉, |10〉, |02〉, |11〉, |20〉}, the density matrix can be written as

ρ =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρ00 ρ01 ρ02 ρ03 ρ04 ρ05

ρ10 ρ11 ρ12 ρ13 ρ14 ρ15

ρ20 ρ21 ρ22 ρ23 ρ24 ρ25

ρ30 ρ31 ρ32 ρ33 ρ34 ρ35

ρ40 ρ41 ρ42 ρ43 ρ44 ρ45

ρ50 ρ51 ρ52 ρ53 ρ54 ρ55

⎤
⎥⎥⎥⎥⎥⎥⎦

. (B15)

Using Eqs. (B9)–(B15), one is able to find the steady-state solution of ρ from Eq. (B1). The qutrit level populations are finally
given by

P0 = ρ00 + ρ22 + ρ55,

P1 = ρ11 + ρ44, (B16)

P2 = ρ33.

Since the probabilities of having one and two photons in the resonator are P̃1 = ρ22 + ρ44 and P̃2 = ρ55, respectively, the
average number of photons in the resonator is

N = ρ22 + ρ44 + 2ρ55, (B17)

or

N = P̃1 + 2P̃2. (B18)
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