6,523 research outputs found
Spin-Orbit Interaction Enabled High-Fidelity Two-Qubit Gates
We study the implications of spin-orbit interaction (SOI) for two-qubit gates
(TQGs) in semiconductor spin qubit platforms. The exchange interaction
governing qubit pairs is anisotropic under SOI, posing a problem for
conventional TQGs derived under the Heisenberg exchange. After developing a
concise form of the effective two-qubit Hamiltonian under SOI, we use it to
derive properties of rotating-frame evolution. Two main observations are made.
First, in contrary to past belief, we find that an appropriate amount of SOI
can significantly enhance the controlled-phase gate fidelity compared to the
no-SOI case. Second, SOI enables novel two-qubit dynamics, that are
conventionally inaccessible through DC evolution, such as the reflection gate
and the controlled-not gate
Observation of Landau quantization and standing waves in HfSiS
Recently, HfSiS was found to be a new type of Dirac semimetal with a line of
Dirac nodes in the band structure. Meanwhile, Rashba-split surface states are
also pronounced in this compound. Here we report a systematic study of HfSiS by
scanning tunneling microscopy/spectroscopy at low temperature and high magnetic
field. The Rashba-split surface states are characterized by measuring Landau
quantization and standing waves, which reveal a quasi-linear dispersive band
structure. First-principles calculations based on density-functional theory are
conducted and compared with the experimental results. Based on these
investigations, the properties of the Rashba-split surface states and their
interplay with defects and collective modes are discussed.Comment: 6 pages, 5 figure
Faba Bean (Vicia faba L.) Nodulating Rhizobia in Panxi, China, Are Diverse at Species, Plant Growth Promoting Ability, and Symbiosis Related Gene Levels
We isolated 65 rhizobial strains from faba bean (Vicia faba L.) from Panxi, China, studied their plant growth promoting ability with nitrogen free hydroponics, genetic diversity with clustered analysis of combined ARDRA and IGS-RFLP, and phylogeny by sequence analyses of 16S rRNA gene, three housekeeping genes and symbiosis related genes. Eleven strains improved the plant shoot dry mass significantly comparing to that of not inoculated plants. According to the clustered analysis of combined ARDRA and IGS-RFLP the isolates were genetically diverse. Forty-one of 65 isolates represented Rhizobium anhuiense, and the others belonged to R. fabae, Rhizobium vallis, Rhizobium sophorae, Agrobacterium radiobacter, and four species related to Rhizobium and Agrobacterium. The isolates carried four and five genotypes of nifH and nodC, respectively, in six different nifH-nodC combinations. When looking at the species-nifH-nodC combinations it is noteworthy that all but two of the six R. anhuiense isolates were different. Our results suggested that faba bean rhizobia in Panxi are diverse at species, plant growth promoting ability and symbiosis related gene levels.Peer reviewe
TPS46, a Rice Terpene Synthase Conferring Natural Resistance to Bird Cherry-Oat Aphid, Rhopalosiphum padi (Linnaeus).
Plant terpene synthases (TPSs) are key enzymes responsible for terpene biosynthesis, and can play important roles in defense against herbivore attack. In rice, the protein sequence of TPS46 was most closely related to maize TPS10. However, unlike maize tps10, tps46 was also constitutively expressed in rice even in the absence of herbivore attack. Potential roles or constitutive emissions of specific volatiles may due to the constitutive expressions of tps46 in rice. Therefore, in the present study, RNA interference (Ri) and overexpression (Oe) rice lines were generated to investigate the potential function of TPS46 in Oryza sativa sp. japonica. Interestingly, the rice plants become more susceptible to Rhopalosiphum padi when expression of tps46 was silenced compared with Wt in greenhouse conditions. Artificial infestation bioassays further confirmed that Ri rice lines were susceptible to R. padi, whereas Oe rice lines were repellent to R. padi. Based on GC-MS and ToF-MS analysis, a total of eight volatile products catalyzed by TPS46 in rice were identified. Among them, only limonene and Eβf could be detected in all the Ri, Oe, and Wt lines, whereas other six volatiles were only found in the blend of volatiles from Oe lines. Moreover, the amount of constitutive limonene and Eβf in the Ri lines was significantly lower than in Wt lines, while the amounts of these two volatiles in the Oe line were obviously higher than in control rice. Our data suggested that the constitutive emissions of Eβf and limonene regulated by the constitutive expression of tps46 may play a crucial role in rice defense against R. padi. Consequently, tps46 could be a potential target gene to be employed for improving the resistance of plants to aphids
Optimizing ET-based irrigation scheduling for wheat and maize with water constraints
© 2017 American Society of Agricultural and Biological Engineers. Deficit irrigation has been shown to increase crop water use efficiency (WUE) under certain conditions, even though the yield is slightly reduced. In this study, the Root Zone Water Quality Model (RZWQM) was first calibrated with measured data from a large weighing lysimeter from 1998 to 2003 at the Yucheng Experimental Station in the North China Plain for daily evapotranspiration (ET), soil water storage (0-120 cm), leaf area index (LAI), aboveground biomass, and grain yield. The calibrated model was then used to explore crop responses to ET-based irrigation management using weather data from 1958 to 2015 and identify the most suitable ET-based irrigation schedules for the area. Irrigation amount was determined by constraining irrigation to a percentage of potential crop ET (40%, 60%, 80%, and 100% ETc) at the various growth stages of wheat [planting to before winter dormancy (P-D), green up to booting (G-B), booting to flowering (B-F), and flowering to maturity (F-M)] and of maize [planting to silking (P-S) and silking to maturity (S-M)], subject to seasonal water availability limits of 100/50, 200/100, 300/150, and 400/200 mm and no water limit for wheat/maize seasons, respectively. In general, wheat was more responsive to irrigation than maize, while greater influence of weather variation was simulated on maize than on wheat. For wheat with seasonal water limits, the highest average WUE was simulated with the highest targeted ETc levels at both the G-B and B-F stages and lower targeted ETc levels at the P-D and F-M stages. However, the highest average grain yield was simulated with the highest targeted ETc levels at all four growth stages for no water limit and the 400 mm water limit, or at both the G-B and B-F stages for the 300 and 200 mm water limits. For maize, lower targeted ETc levels after silking did not significantly affect maize production due to the high season rainfall, but irrigation of 60% ETc before silking was recommended. These results could be used as guidelines for precision irrigation along with real-time weather information
Relationship between epicardial fat volume on cardiac CT and atherosclerosis severity in three-vessel coronary artery disease: a single-center cross-sectional study
BACKGROUND: The ideal treatment strategy for stable three-vessel coronary artery disease (CAD) patients are difficult to determine and for patients undergoing conservative treatment, imaging evidence of coronary atherosclerotic severity progression remains limited. Epicardial fat volume (EFV) on coronary CT angiography (CCTA) has been considered to be associated with coronary atherosclerosis. Therefore, this study aims to evaluate the relationship between EFV level and coronary atherosclerosis severity in three-vessel CAD. METHODS: This retrospective study enrolled 252 consecutive patients with three-vessel CAD and 252 normal control group participants who underwent CCTA between January 2018 and December 2019. A semi-automatic method was developed for EFV quantification on CCTA images, standardized by body surface area. Coronary atherosclerosis severity was evaluated and scored by the number of coronary arteries with ≥ 50% stenosis on coronary angiography. Patients were subdivided into groups on the basis of lesion severity: mild (score = 3 vessels, n = 85), moderate (3.5 vessels ≤ score < 4 vessels, n = 82), and severe (4 vessels ≤ score ≤ 7 vessels, n = 85). The independent sample t-test, analysis of variance, and logistic regression analysis were used to evaluate the associations between EFV level and severity of coronary atherosclerosis. RESULTS: Compared with normal controls, three-vessel CAD patients had significantly higher EFV level (65 ± 22 mL/m(2) vs. 48 ± 19 mL/m(2); P < 0.001). In patients with three-vessel CAD, there was a progressive decline in EFV level as the score of coronary atherosclerosis severity increased, especially in those patients with a body mass index (BMI) ≥ 25 kg/m(2) (75 ± 21 mL/m(2) vs. 72 ± 22 mL/m(2) vs. 62 ± 17 mL/m(2); P < 0.05). Multivariable regression analysis showed that both BMI (OR 3.40, 95% CI 2.00–5.78, P < 0.001) and the score of coronary atherosclerosis severity (OR 0.49, 95% CI 0.26–0.93, P < 0.05) were independently related to the change of EFV level. CONCLUSION: Three-vessel CAD patients do have higher EFV level than the normal controls. While, there may be an inverse relationship between EFV level and the severity of coronary atherosclerosis in patients with three-vessel CAD
CoPace:Edge Computation Offloading and Caching for Self-Driving with Deep Reinforcement Learning
Currently, self-driving, emerging as a key automatic application, has brought a huge potential for the provision of in-vehicle services (e.g., automatic path planning) to mitigate urban traffic congestion and enhance travel safety. To provide high-quality vehicular services with stringent delay constraints, edge computing (EC) enables resource-hungry self-driving vehicles (SDVs) to offload computation-intensive tasks to the edge servers (ESs). In addition, caching highly reusable contents decreases the redundant transmission time and improves the quality of services (QoS) of SDVs, which is envisioned as a supplement to the computation offloading. However, the high mobility and time-varying requests of SDVs make it challenging to provide reliable offloading decisions while guaranteeing the resource utilization of content caching. To this end, in this paper we propose a \underline{co}llaborative com\underline{p}utation offlo\underline{a}ding and \underline{c}ont\underline{e}nt caching method, named CoPace, by leveraging deep reinforcement learning (DRL) in EC for self-driving system. Specifically, we resort to a deep learning model to predict the future time-varying content popularity, taking into account the temporal-spatial attributes of requests. Moreover, a DRL-based algorithm is developed to jointly optimize the offloading and caching decisions, as well as the resource allocation (i.e., computing and communication resources) strategies. Extensive experiments with real-world datasets in Shanghai, China, are conducted to evaluate the performance, which demonstrates that CoPace is both effective and well-performed
Genome-Wide Analysis of Genes Involved in the GA Signal Transduction Pathway in ‘duli’ Pear (Pyrus betulifolia Bunge)
Gibberellic acid (GA) is an important phytohormone that regulates every aspect of plant growth and development. While elements involved in GA signaling have been identified and, hence, their functions have been well studied in model plants, such as Arabidopsis and rice, very little is known in pear. We, therefore, analyzed the genes related to GA signaling from the recently sequenced genome of the wildtype ‘duli’ pear (Pyrus betulifolia Bunge), a widely used rootstock for grafting in pear cultivation in China due to its vigorous growth and resistance to abiotic and biotic stress. In total, 15 genes were identified, including five GA receptors PbGID1s (GA-INSENSTIVE DWARF 1), six GA negative regulators, PbDELLAs, and four GA positive regulators, PbSLYs. Exogenous application of GA could promote the expression of PbGID1s but inhibit that of PbDELLAs and PbSLYs in tissue culture ‘duli’ pear seedlings. The expression profiles of these genes in field-grown trees under normal growth conditions, as well as in tissue-cultured seedlings treated with auxin (IAA), GA, paclobutrazol (PAC), abscisic acid (ABA), and sodium chloride (NaCl), were also studied, providing further evidence of the involvement of these genes in GA signaling in ‘duli’ pear plants. The preliminary results obtained in this report lay a good foundation for future research into GA signaling pathways in pear. Importantly, the identification and preliminary functional verification of these genes could guide molecular breeding in order to obtain the highly desired dwarf pear rootstocks for high-density plantation to aid easy orchard management and high yielding of pear fruits
- …