10 research outputs found

    Observation of unitary p-wave interactions between fermions in an optical lattice

    Get PDF
    Exchange-antisymmetric pair wavefunctions in fermionic systems can give rise to unconventional superconductors and superfluids with non-trivial transport properties. The realisation of these states in controllable quantum systems, such as ultracold gases, could enable new types of quantum simulations, topological quantum gates, and exotic few-body states. However, p-wave and other antisymmetric interactions are weak in naturally occurring systems, and their enhancement via Feshbach resonances in ultracold systems has been limited by three-body loss. In this work, we create isolated pairs of spin-polarised fermionic atoms in a multi-orbital three-dimensional optical lattice. We spectroscopically measure elastic p-wave inter- action energies of strongly interacting pairs of atoms near a magnetic Feshbach resonance, and find pair lifetimes to be up to fifty times larger than in free space. We demonstrate that on-site inter- action strengths can be widely tuned by the magnetic field and confinement strength, but collapse onto a universal single-parameter curve when rescaled by the harmonic energy and length scales of a single lattice site. Since three-body processes are absent within our approach, we are able to observe elastic unitary p-wave interactions for the first time. We take the first steps towards coherent temporal control via Rabi oscillations between free-atom and interacting-pair states. All experimental observations are compared both to an exact solution for two harmonically confined atoms interacting via a p-wave pseudopotential, and to numerical solutions using an ab-initio interaction potential. The understanding and control of on-site p-wave interactions provides a necessary component for the assembly of multi-orbital lattice models, and a starting point for investigations of how to protect such a system from three-body recombination even in the presence of weak tunnelling, for instance using Pauli blocking and lattice engineering. This combination will open a path for the exploration of new states of matter and many-body phenomena enabled by elastic p-wave interactions.Physic

    Comparison of pneumonitis risk between immunotherapy alone and in combination with chemotherapy: an observational, retrospective pharmacovigilance study

    Get PDF
    Importance: Checkpoint inhibitor pneumonitis (CIP) is a rare but serious adverse event that may impact treatment decisions. However, there is limited information comparing CIP risks between immune checkpoint inhibitor (ICI) monotherapy and combination with chemotherapy due to a lack of direct cross-comparison in clinical trials.Objective: To determine whether ICI combination with chemotherapy is superior to ICI in other drug regimens (including monotherapy) in terms of CIP risk.Study Design and Methods: This observational, cross-sectional and worldwide pharmacovigilance cohort study included patients who developed CIP from the World Health Organization database (WHO) VigiBase and the US Food and Drug Administration Adverse Event Reporting System (FAERS) database. Individual case safety reports (ICSR) were extracted from 2015 to 2020 in FAERS and from 1967 to 2020 in VigiBase. Timing and reporting odds ratio (ROR) of CIP in different treatment strategies were used to detect time-to-onset and the risk of pneumonitis after different immunotherapy regimens.Results: A total of 93,623 and 114,704 ICI-associated ICSRs were included in this study from VigiBase and FAERS databases respectively. 3450 (3.69%) and 3278 (2.86%) CIPs occurred after therapy initiation with a median of 62 days (VigiBase) and 40 days (FAERS). Among all the CIPs, 274 (7.9%) and 537 (16.4%) CIPs were associated with combination therapies. ICIs plus chemotherapy combination was associated with pneumonitis in both VigiBase [ROR 1.35, 95% CI 1.18-1.52] and FAERS [ROR 1.39, 95% CI 1.27–1.53]. The combination of anti-PD-1 antibodies and anti-CTLA-4 antibodies with chemotherapy demonstrated an association with pneumonitis in both VigiBase [PD-1+chemotherapy: 1.76, 95% CI 1.52-2.05; CTLA-4+chemotherapy: 2.36, 95% CI 1.67-3.35] and FAERS [PD-1+chemotherapy: 1.70, 95% CI 1.52-1.91; CTLA-4+chemotherapy: 1.70, 95% CI 1.31-2.20]. Anti-PD-L1 antibodies plus chemotherapy combinations did not show the association.Conclusion: Compared to ICI in other drug regimens (including monotherapy), the combination of ICI plus chemotherapy is significantly associated with higher pneumonitis toxicity. Anti-PD-1/CTLA4 medications in combination with chemotherapy should be obviated in patients with potential risk factors for CIP.Trial Registration: clinicaltrials.gov, ChiCTR220005906

    Pan-Atlantic connectivity of marine biogeochemical and ecological processes and the impact of anthropogenic pressures, SO287, 11.12.2021 - 11.01.2022, Las Palmas (Spain) - Guayaquil (Ecuador)

    Get PDF
    The transit of RV SONNE from Las Palmas (departure: 11.12.2021) to Guayaquil, Ecuador (arrival: 11.01.2022) is directly related to the international collaborative project SO287-CONNECT of GEOMAR in cooperation with Hereon and the University of Bremen, supported by the German Federal Ministry of Education and Research (BMBF) between October 15 2021 and January 15 2024. The research expedition was conducted to decipher the coupling of biogeochemical and ecological processes and their influence on atmospheric chemistry along the transport pathway of water from the upwelling zones off Africa into the Sargasso Sea and further to the Caribbean and the equatorial Pacific. Nutrient-rich water rises from the deep and promotes the growth of plant and animal microorganisms, and fish at the ocean surface off West Africa. The North Equatorial Current water carries the water from the upwelling, which contains large amounts of organic material across the Atlantic to the Caribbean, supporting bacterial activity along the way. But how the nutritious remnants of algae and other substances are processed on their long journey, biochemically transformed, decomposed into nutrients and respired to carbon dioxide, has so far only been partially investigated. Air, seawater and particles were sampled in order to provide new details about the large cycles of carbon and nitrogen, but also of many other elements such as oxygen, iodine, bromine and sulfur. Inorganic and organic bromine and iodine compounds are generally emitted naturally from the ocean into the atmosphere, promote cloud formation and affect climate, and some even reach the stratosphere where they contribute to ozone depletion. We measured how much of these compounds are released from the ocean, and at what locations and how they are transformed in the ocean and in the atmosphere. Sargassum algae, which have become a nuisance on beaches in the western and eastern Atlantic, support life and contribute to carbon cycling in the middle of the Atlantic, the Sargasso Sea and in the Caribbean, while their contribution to halogen cycling and marine bromine and iodine emissions was previously unknown. We investigated the influence of various natural parameters such as temperature and solar radiation on the biogeochemical transformation processes in order to understand the influence of climate change on these processes in incubation experiments with seawater and algae. We investigated how anthropogenic signals such as shipping traffic influence the nitrogen and sulphur cycle in the ocean, as well as the impact of nitrogen oxides from ship exhaust and sulphurous, acidic and dirty water from purification systems on organisms and biochemical processes. Plastic debris was sampled from the surface waters to investigate its contribution to global biogeochemical transformation processes. The working hypotheses of the research program were: Bioavailability of dissolved organic carbon in surface waters decreases along the productivity gradient and transport pathway from the Eastern to the Western Tropical North Atlantic. Nutrient gradients from East to West constrain the microbial utilization of organic matter- contributing to an accumulation of C-rich organic matter due to a) limited mineralization and b) enhanced exudation- also leading to gel-like particles accumulation in the western tropical North Atlantic and Sargasso Sea. Tropospheric and stratospheric ozone are strongly impacted by biogeochemical and ecological processes occurring around and in the NA gyre system related to marine iodine and bromine cycles. The long-range transport of natural and anthropogenic organic matter in water and of gases and aerosols in the air impact carbon-export, biogeochemical cycles in the water column, and the release of gases and particles from the ocean significantly. 4 SONNE -Berichte, SO287, Las Palmas - Guayaquil, 11.12.2021 - 11.01.202 The data and samples obtained specifically target carbon, nutrient and halogen cycling, the composition of phytoplankton, bacteria, the transport and sequestration of macro algae and the air-sea exchange processes of climate relevant gases and aerosols. The influence of ecological and transport processes, as well as anthropogenic impacts on the North Atlantic gyre system, specifically in the Sargasso Sea and the influence of ship emissions throughout the Atlantic towards the west and into the Pacific will be investigated with the data

    Galvanic Replacement Preparation of Spindle-Structured Sb@C@NC as Anode for Superior Lithium-Ion Storage

    No full text
    Antimony (Sb) is regarded to be a potential alloying-type anode for lithium-ion batteries due to its excellent electrochemical reversibility and high theoretical specific capacity (660 mA h g−1). However, huge volume expansion accompanying rapid capacity fading seriously hinders its commercial application. Herein, double-carbon-modified spindle-structured Sb@C@NC were constructed via galvanic replacement using a Fe-based metal-organic framework (MOF) with polydopamine-coated-derived Fe@C@NC as reactants. Due to the unique double-carbon-encapsulated structure, the Sb@C@NC anode effectively moderates the volume fluctuation and maintains the integral framework from collapsing during the annealing and cycling process. As lithium-ion battery (LIB) anodes, Sb@C@NC attained excellent cycling performance (389 mAh g−1 at 100 mA g−1 after 100 cycles) and superior rate capability (a reversible capacity of 343 mAh g−1 at 2000 mA g−1). Such an MOF-based approach provides an adjustable strategy for Sb-based nanomaterial and shield light on the applications of Sb@C@NC in other fields

    Buried Defect Detection Method for a Blowout Preventer Seal Ring Groove Based on an Ultrasonic Phased Array

    No full text
    This study aims to investigate an accurate detection method to detect defects in the gasket ring groove of the blowout preventer (BOP) using the ultrasonic phased array technology. Traditionally, it is difficult to accurately determine the type and size of defects in the gasket ring groove due to the complexity of the BOP configuration and the interference between the defect echo and the structural echo when using the ultrasonic phased array detection technology. In this study, firstly, the appropriate detection process parameters are determined by using simulation software for simulating and analyzing the defects of different sizes and types in the gasket ring groove of a BOP. Thereafter, according to the detection process parameters determined by the simulation analysis, we carry out a corresponding actual detection test. Simulation analysis and detection test results show that the relative amplitude of the test results and the simulation results differ within 1 dB, and the simulation results have a guiding role for the actual detection. The defect echo and structure echo can be clearly distinguished by selecting appropriate detection process parameters, such as probe frequency 5 MHz, array elements 36, and probe aperture 16 mm. The research results can provide theoretical reference for the detection of blowout preventer

    Surgical resection of soft tissue metastasis in cancers: A single‐center study of 77 cases over a 7‐year period

    No full text
    Abstract Introduction Soft tissue metastasis (STM) of cancers, encompassing skeletal muscle and subcutaneous tissue metastasis, is less common due to unique homeostatic conditions. With longer life expectancy and the advent of new imaging modalities, clinical physicians will increasingly encounter and manage such cases. This study retrospectively reviewed cases of STM in visceral cancers who underwent surgery at Fudan University Shanghai Cancer Center over a 7‐year period. Methods Data were collected through a comprehensive review of medical records, including demographic variables, primary tumor characteristics, surgical data, tumor pathology, and outcomes. Survival analysis was performed using Kaplan–Meier curves. Results The study included 77 cases with a median follow‐up period of 854 days. The most common primary tumor sites were the lung (11) and breast (10). The abdominal wall was the most frequent site of metastasis. The combination of visceral metastasis, age over 52 years, and a history of primary tumor correlates with a poorer prognosis. Surgical‐related metastases are associated with a higher degree of differentiation. Additionally, we have identified a better prognosis for patients with cancer of unknown primary (CUP) exhibiting potential resectable soft tissue metastases. Conclusion The combination of visceral metastasis, age over 52 years, and a history of primary tumor suggest a poorer prognosis. While no significant impact on survival was observed for patients with lymph node metastasis. Surgical‐related metastases are associated with a higher degree of differentiation. CUP patients with potentially resectable soft tissue metastases should be considered for surgical intervention

    Regulation of LncRNAs and microRNAs in neuronal development and disease

    No full text
    Non-coding RNAs (ncRNAs) are RNAs that do not encode proteins but play important roles in regulating cellular processes. Multiple studies over the past decade have demonstrated the role of microRNAs (miRNAs) in cancer, in which some miRNAs can act as biomarkers or provide therapy target. Accumulating evidence also points to the importance of long non-coding RNAs (lncRNAs) in regulating miRNA-mRNA networks. An increasing number of ncRNAs have been shown to be involved in the regulation of cellular processes, and dysregulation of ncRNAs often heralds disease. As the population ages, the incidence of neurodegenerative diseases is increasing, placing enormous pressure on global health systems. Given the excellent performance of ncRNAs in early cancer screening and treatment, here we attempted to aggregate and analyze the regulatory functions of ncRNAs in neuronal development and disease. In this review, we summarize current knowledge on ncRNA taxonomy, biogenesis, and function, and discuss current research progress on ncRNAs in relation to neuronal development, differentiation, and neurodegenerative diseases

    Table1_Comparison of pneumonitis risk between immunotherapy alone and in combination with chemotherapy: an observational, retrospective pharmacovigilance study.DOCX

    No full text
    Importance: Checkpoint inhibitor pneumonitis (CIP) is a rare but serious adverse event that may impact treatment decisions. However, there is limited information comparing CIP risks between immune checkpoint inhibitor (ICI) monotherapy and combination with chemotherapy due to a lack of direct cross-comparison in clinical trials.Objective: To determine whether ICI combination with chemotherapy is superior to ICI in other drug regimens (including monotherapy) in terms of CIP risk.Study Design and Methods: This observational, cross-sectional and worldwide pharmacovigilance cohort study included patients who developed CIP from the World Health Organization database (WHO) VigiBase and the US Food and Drug Administration Adverse Event Reporting System (FAERS) database. Individual case safety reports (ICSR) were extracted from 2015 to 2020 in FAERS and from 1967 to 2020 in VigiBase. Timing and reporting odds ratio (ROR) of CIP in different treatment strategies were used to detect time-to-onset and the risk of pneumonitis after different immunotherapy regimens.Results: A total of 93,623 and 114,704 ICI-associated ICSRs were included in this study from VigiBase and FAERS databases respectively. 3450 (3.69%) and 3278 (2.86%) CIPs occurred after therapy initiation with a median of 62 days (VigiBase) and 40 days (FAERS). Among all the CIPs, 274 (7.9%) and 537 (16.4%) CIPs were associated with combination therapies. ICIs plus chemotherapy combination was associated with pneumonitis in both VigiBase [ROR 1.35, 95% CI 1.18-1.52] and FAERS [ROR 1.39, 95% CI 1.27–1.53]. The combination of anti-PD-1 antibodies and anti-CTLA-4 antibodies with chemotherapy demonstrated an association with pneumonitis in both VigiBase [PD-1+chemotherapy: 1.76, 95% CI 1.52-2.05; CTLA-4+chemotherapy: 2.36, 95% CI 1.67-3.35] and FAERS [PD-1+chemotherapy: 1.70, 95% CI 1.52-1.91; CTLA-4+chemotherapy: 1.70, 95% CI 1.31-2.20]. Anti-PD-L1 antibodies plus chemotherapy combinations did not show the association.Conclusion: Compared to ICI in other drug regimens (including monotherapy), the combination of ICI plus chemotherapy is significantly associated with higher pneumonitis toxicity. Anti-PD-1/CTLA4 medications in combination with chemotherapy should be obviated in patients with potential risk factors for CIP.Trial Registration: clinicaltrials.gov, ChiCTR2200059067</p
    corecore