249 research outputs found

    Valley vortex states and degeneracy lifting via photonic higher-band excitation

    Get PDF
    We demonstrate valley-dependent vortex generation in a photonic graphene. Without breaking the inversion symmetry, excitation of two equivalent valleys leads to formation of an optical vortex upon Bragg-reflection to the third valley, with its chirality determined by the valley degree of freedom. Vortex-antivortex pairs with valley-dependent topological charge flipping are also observed and corroborated by numerical simulations. Furthermore, we develop a three-band effective Hamiltonian model to describe the dynamics of the coupled valleys, and find that the commonly used two-band model is not sufficient to explain the observed vortex degeneracy lifting. Such valley-polarized vortex states arise from high-band excitation without inversion symmetry breaking or synthetic-field-induced gap opening. Our results from a photonic setting may provide insight for the study of valley contrasting and Berry-phase mediated topological phenomena in other systems

    Photonic realization of a generic type of graphene edge states exhibiting topological flat band

    Full text link
    Cutting a honeycomb lattice (HCL) can end up with three types of edges (zigzag, bearded and armchair), as is well known in the study of graphene edge states. Here we theoretically investigate and experimentally demonstrate a class of graphene edges, namely, the twig-shaped edges, using a photonic platform, thereby observing edge states distinctive from those observed before. Our main findings are: (i) the twig edge is a generic type of HCL edges complementary to the armchair edge, formed by choosing the right primitive cell rather than simple lattice cutting or Klein edge modification; (ii) the twig edge states form a complete flat band across the Brillouin zone with zero-energy degeneracy, characterized by nontrivial topological winding of the lattice Hamiltonian; (iii) the twig edge states can be elongated or compactly localized along the boundary, manifesting both flat band and topological features. Such new edge states are realized in a laser-written photonic graphene and well corroborated by numerical simulations. Our results may broaden the understanding of graphene edge states, bringing about new possibilities for wave localization in artificial Dirac-like materials.Comment: 13 pages, 4 figure

    Unconventional Flatband Line States in Photonic Lieb Lattices

    Get PDF
    Flatband systems typically host "compact localized states"(CLS) due to destructive interference and macroscopic degeneracy of Bloch wave functions associated with a dispersionless energy band. Using a photonic Lieb lattice(LL), we show that conventional localized flatband states are inherently incomplete, with the missing modes manifested as extended line states which form non-contractible loops winding around the entire lattice. Experimentally, we develop a continuous-wave laser writing technique to establish a finite-sized photonic LL with specially-tailored boundaries, thereby directly observe the unusually extended flatband line states.Such unconventional line states cannot be expressed as a linear combination of the previously observed CLS but rather arise from the nontrivial real-space topology.The robustness of the line states to imperfect excitation conditions is discussed, and their potential applications are illustrated

    Subcellular localization and function study of a secreted phospholipase C from Nocardia seriolae

    Get PDF
    Fish nocardiosis is a chronic systemic granulomatous disease, andNocardia seriolaeis the main pathogen that causes this disease. But the pathogenesis and virulence factors ofN. seriolaeare not fully understood. A phospholipase C (PLC), which was likely to be a secreted protein targeting host cell mitochondria, was found by the bioinformatics analysis on the whole genome sequence ofN. seriolae. In order to determine the subcellular localization and study the preliminary function of PLC fromN. seriolae(NsPLC), the gene cloning, secreted protein identification, subcellular localization in host cells and apoptosis detection of NsPLC were carried out in this study. The results showed that NsPLC was a secreted protein by mass spectrometry analysis of extracellular products fromN. seriolae. Subcellular localization of NsPLC-GFP fusion protein in FHM cells revealed that the green fluorescence exhibited a punctate distribution near the nucleus and did not co-localize with mitochondria. In addition, apoptosis assay suggested that apoptosis was induced in FHM cells by the overexpression of NsPLC. This study may lay the foundation for further study on the function of NsPLC and promote the understanding of the virulence factors and pathogenic mechanism ofN. seriolae

    Dynamic Ride Height Adjusting Controller of ECAS Vehicle with Random Road Disturbances

    Get PDF
    The ride height control system is greatly affected by the random road excitation during the ride height adjusting of the driving condition. The structure of ride height adjusting system is first analyzed, and then the mathematical model of the ride height adjusting system with the random disturbance is established as a stochastic nonlinear system. This system is decoupled using the differential geometry theory and stabilized using the Variable Structure Control (VSC) technique. The designed ride height control system converges in probability to be asymptotically stable in the sliding motion band, and the desired control law is solved to ensure the stable adjustment of the ride height system. Simulation results show that the proposed stochastic VSC method is effective for the dynamic adjusting of the ride height. Finally, the semiphysical rig test illustrates the applicability of the proposed scheme

    Single-Molecule Real-Time Transcript Sequencing Identified Flowering Regulatory Genes in Crocus Sativus

    Get PDF
    Background: Saffron crocus (Crocus sativus) is a valuable spice with medicinal uses in gynaecopathia and nervous system diseases. Identify flowering regulatory genes plays a vital role in increasing flower numbers, thereby resulting in high saffron yield. Results: Two full length transcriptome gene sets of flowering and non-flowering saffron crocus were established separately using the single-molecule real-time (SMRT) sequencing method. A total of sixteen SMRT cells generated 22.85 GB data and 75,351 full-length saffron crocus unigenes on the PacBio RS II panel and further obtained 79,028 SSRs, 72,603 lncRNAs and 25,400 alternative splicing (AS) events. Using an Illumina RNA-seq platform, an additional fifteen corms with different flower numbers were sequenced. Many differential expression unigenes (DEGs) were screened separately between flowering and matched non-flowering top buds with cold treatment (1677), flowering top buds of 20 g corms and non-flowering top buds of 6 g corms (1086), and flowering and matched nonflowering lateral buds (267). A total of 62 putative flower-related genes that played important roles in vernalization (VRNs), gibberellins (G3OX, G2OX), photoperiod (PHYB, TEM1, PIF4), autonomous (FCA) and age (SPLs) pathways were identified and a schematic representation of the flowering gene regulatory network in saffron crocus was reported for the first time. After validation by real-time qPCR in 30 samples, two novel genes, PB.20221.2 (p = 0.004, r = 0.52) and PB.38952.1 (p = 0.023, r = 0.41), showed significantly higher expression levels in flowering plants. Tissue distribution showed specifically high expression in flower organs and time course expression analysis suggested that the transcripts increasingly accumulated during the flower development period. Conclusions: Full-length transcriptomes of flowering and non-flowering saffron crocus were obtained using a combined NGS short-read and SMRT long-read sequencing approach. This report is the first to describe the flowering gene regulatory network of saffron crocus and establishes a reference full-length transcriptome for future studies on saffron crocus and other Iridaceae plants

    Universal momentum-to-real-space mapping of topological singularities

    Full text link
    Topological properties of materials, as manifested in the intriguing phenomena of quantum Hall effect and topological insulators, have attracted overwhelming transdisciplinary interest in recent years. Topological edge states, for instance, have been realized in versatile systems including electromagnetic-waves. Typically, topological properties are revealed in momentum space, using concepts such as Chern number and Berry phase. Here, we demonstrate a universal mapping of the topology of Dirac-like cones from momentum space to real space. We evince the mapping by exciting the cones in photonic honeycomb (pseudospin-1/2) and Lieb (pseudospin-1) lattices with vortex beams of topological charge l, optimally aligned for a chosen pseudospin state s, leading to direct observation of topological charge conversion that follows the rule of l to l+2s. The mapping is theoretically accounted for all initial excitation conditions with the pseudospin-orbit interaction and nontrivial Berry phases. Surprisingly, such a mapping exists even in a deformed lattice where the total angular momentum is not conserved, unveiling its topological origin. The universality of the mapping extends beyond the photonic platform and 2D lattices: equivalent topological conversion occurs for 3D Dirac-Weyl synthetic magnetic monopoles, which could be realized in ultracold atomic gases and responsible for mechanism behind the vortex creation in electron beams traversing a magnetic monopole field
    corecore