11,379 research outputs found

    Effects of wet N 2O oxidation on interface properties of 6H-SiC MOS capacitors

    Get PDF
    Oxynitrides were grown on n- and p-type 6H-SiC by wet N 2O oxidation (bubbling N 2O gas through deionized water at 95°C) or dry N 2O oxidation followed by wet N 2O oxidation. Their oxide/SiC interfaces were investigated for fresh and stressed devices. It was found that both processes improve p-SiC/oxide but deteriorate n-SiC/oxide interface properties when compared to dry N 2O oxidation alone. The involved mechanism could be enhanced removal of unwanted carbon compounds near the interface due to the wet ambient, and hence a reduction of donor-like interface states for the p-type devices. As for the n-type devices, incorporation of hydrogen-related species near the interface under the wet ambient increase acceptor-like interface states. In summary, the wet N 2O oxidation can be used for providing comparable reliability for n- and p-SiC MOS devices, and especially obtaining high-quality oxide-SiC interface in p-type MOS devices.published_or_final_versio

    Impacts of Ti on electrical properties of Ge metal-oxide-semiconductor capacitors with ultrathin high-κ LaTiON gate dielectric

    Get PDF
    Ge Metal-Oxide-Semiconductor (MOS) capacitors with LaON gate dielectric incorporating different Ti contents are fabricated and their electrical properties are measured and compared. It is found that Ti incorporation can increase the dielectric permittivity, and the higher the Ti content, the larger is the permittivity. However, the interfacial and gate-leakage properties become poorer as the Ti content increases. Therefore, optimization of Ti content is important in order to obtain a good trade-off among the electrical properties of the device. For the studied range of the Ti/La 2O 3 ratio, a suitable Ti/La 2O 3 ratio of 14.7% results in a high relative permittivity of 24.6, low interfacestate density of 3.1 × 10 11 eV -1 cm -2, and relatively low gate-leakage current density of 2.0×10 -3 Acm -2 at a gate voltage of 1 V. © The Author(s) 2010.published_or_final_versionSpringer Open Choice, 21 Feb 201

    Optimization of N content for higk-k LaTiON gate dielectric of Ge MOS capacitor

    Get PDF
    Thin LaTiON gate dielectric is deposited on Ge (100) substrate by reactive co-sputtering of La 2O 3 and Ti targets under different Ar/N 2 ratios of 24/3, 24/6, 24/12, and 24/18, and their electrical properties are investigated and compared. Results show that the LaTiON gate-dielectric Ge MOS capacitor prepared at an Ar/N 2 ratio of 24/6 exhibits highest relative permittivity, smallest capacitance equivalent thickness, and best electrical characteristics, including low interface-state density, small C-V hysteresis and low gate leakage current. This is attributed to the fact that a suitable N content in LaTiON can effectively suppress the growth of low-k GeO x interfacial layer between LaTiON and Ge substrate.published_or_final_versionThe IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC) 2009, Xi'an, China, 25-27 December 2009. In Proceedings of EDSSC, 2009, p. 225-22

    Fabrication and electrical characterization of MONOS memory with novel high-κ gate stack

    Get PDF
    A novel high-κ gate stack structure with HfON/SiO 2 as dual tunneling layer (DTL), AIN as charge storage layer (CSL) and HfAIO as blocking layer (BL) is proposed to prepare the charge-trapping type of MONOS non-volatile memory device by employing in-situ sputtering method. The memory window, program/erase and retention properties are investigated and compared with similar gate stack structure with Si 3N 4/SiO 2 as DTL, HfO 2 as CSL and Al 2O 3 as BL. Results show a large memory window of 3.55 V at PIE voltage of +8 V/-I5 V, high program/erase speed and good retention characteristic can be achieved using the novel Au/ HfAIO/AIN/(HfON/SiO 2)/Si gate stack structure. The main mechanisms lie in the enhanced electron injection through the high-κ HfON/SiO 2 DTL, high trapping efficiency of the high-κ AIN material and effective blocking role of the high-κ HfAIO BL. ©2009 IEEE.published_or_final_versionThe IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) 2009, Xi'an, China, 25-27 December 2009. In Proceedings of EDSSC, 2009, p. 521-52

    Improved interface properties of p-type 6H–SiC/SiO2 system by NH3 pretreatment

    Get PDF
    Effects of preoxidation NH3 treatment on p-type 6H–SiC/SiO2 interface properties were investigated as compared to conventional thermally oxidized devices. It was found that NH3 treatment before oxidation can reduce the SiC/SiO2 interface states and fixed oxide charge. Furthermore, less shift of flatband voltage, and smaller increases of effective oxide charge and interface states during high-field stress were observed for the NH3 pretreated devices. © 2000 American Institute of Physics.published_or_final_versio

    Sensing characteristics of a novel NH 3-nitrided schottky-diode hydrogen sensor

    Get PDF
    A novel NHi-nitrided Schottky-diode hydrogen sensor has been successfully fabricated Measurements have been performed to investigate the sensitivity, stability and response speed of the sensor at different temperatures and hydrogen concentrations. It can respond to hydrogen variation very quickly and can give significant response ewn at low hydrogen concentration. The studied device exhibits high sensitivity of 350 % at 300 °C when 800 ppm IJ in N2 gas is introduced. The sensitivity is 15 times greater than that of the Pt-SiC sensor. The excellent hydrogen-sensing characteristics of this novel sensor make it very suitable for detecting hydrogen leakage in high-temperature environment. The effects of hydrogen adsorption on the barrier height and hydrogen reaction kinetics are also investigated. ©2004 IEEE.published_or_final_versio

    Improved hydrogen-sensitive properties of MISiC Schottky sensor with thin NO-grown oxynitride as gate insulator

    Get PDF
    Thin oxynitride grown in NO at low temperature was successfully used as gate insulator for fabricating MISiC Schottky hydrogen sensors. Response properties of the sensors were compared with other MISiC Schottky sensors with thicker or no oxynitride. It was found that the thin oxynitride played an important role in increasing device sensitivity and stability. Even at a low H 2 concentration, e.g., 100-ppm H 2 in N 2, a significant response was observed, indicating a promising application for detecting hydrogen leakage. Moreover, a rapid and stable dynamic response on the introduction and removal of H 2/N 2 mixed gas was realized for the sensor. Improved interface properties and larger barrier height associated with the thin oxynitride are responsible for the excellent response characteristics. As a result, NO oxidation could be a superior process for preparing highly sensitive and highly reliable MISiC Schottky hydrogen sensors.published_or_final_versio

    Improved electrical properties of Ge p-MOSFET with HfO 2 gate dielectric by using TaO xN y interlayer

    Get PDF
    The electrical characteristics of germanium p-metal-oxide-semiconductor (p-MOS) capacitor and p-MOS field-effect transistor (FET) with a stack gate dielectric of HfO 2TaO xN y are investigated. Experimental results show that MOS devices exhibit much lower gate leakage current than MOS devices with only HfO 2 as gate dielectric, good interface properties, good transistor characteristics, and about 1.7-fold hole-mobility enhancement as compared with conventional Si p-MOSFETs. These demonstrate that forming an ultrathin passivation layer of TaO xN y on germanium surface prior to deposition of high- k dielectrics can effectively suppress the growth of unstable GeO x, thus reducing interface states and increasing carrier mobility in the inversion channel of Ge-based transistors. © 2008 IEEE.published_or_final_versio

    Designing SSI clusters with hierarchical checkpointing and single I/O space

    Get PDF
    Adopting a new hierarchical checkpointing architecture, the authors develop a single I/O address space for building highly available clusters of computers. They propose a systematic approach to achieving a single system image by integrating existing middleware support with the newly developed features.published_or_final_versio

    Impacts of Ti content and annealing temperature on electrical properties of Si MOS capacitors with HfTiON gate dielectric

    Get PDF
    Proceedings of the IEEE International Conference of Electron Devices and Solid-State Circuits, 2009, p. 221-224HfTiON gate dielectric is fabricated by reactive co-sputtering method followed by annealing in N 2 ambient. The effects of Ti content and annealing temperature on the performances of HfTiON gate-dielectric Si MOS devices are investigated. Experimental results indicate that gate capacitance is increased with increasing Ti content. However, when the Ti/Hf ratio exceeds -1.75, increase of the gate capacitance becomes small. Surface roughness of the samples annealed at different temperatures is analyzed by AFM, and results show that high annealing temperature (e.g. 700 °C for 30 s) can produce smooth surface, thus resulting in low gate leakage current. ©2009 IEEE.published_or_final_versio
    • …
    corecore