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Effects of preoxidation Nk treatment onp-type 6H-SIC/SiQ interface properties were
investigated as compared to conventional thermally oxidized devices. It was found that NH
treatment before oxidation can reduce the SiCj/Siierface states and fixed oxide charge.
Furthermore, less shift of flatband voltage, and smaller increases of effective oxide charge and
interface states during high-field stress were observed for thg p¥étreated devices. @000
American Institute of Physic§S0003-695(00)01803-9

SiC offers many advantages over Si for high- wafers was first performed at a flow of 250 ml/min, and then
temperature, high-power, and high-freugency devices due ta 380 min oxidation was carried out in a wet ambient by
its large band gap, high thermal conductivity, and high elecbubbling oxygen through deionized water at 95(d&noted
tron saturation drift velocity. Moreover, one of the most im- as NH3 sampleat a flow rate of 250 ml/min. The control
portant advantages of SiC over other wide band gap sempample without preoxidation Nftreatment was also ther-
conductors is that it can be thermally oxidized to form §iO mally oxidized under exactly the same conditiddgnoted
However, it has been frequently reported that oxides growr@s OX. After the oxidation, the two samples were annealed
on SiC have high interface-state density and a large amouri#t N2 at a flow of 250 ml/min at 1100 °C for 1.5 h. Finally,
of fixed oxide charges, especially for the Si(-SiC aluminum was thermally evaporated, and then patterned as
structuret? Like silicon processing, an important factor af- gate electrode of MOS capacitof$20 umx150 um), fol-
fecting the interface and oxide is the passivation of SiC surlowed by a forming gas anneal at 410°C for 30 min. The
face before oxidation. Relevant research has been reportdffal oxide thickness, determined from high frequeribf)
using a B surface cleaning technigii€ and high-mobility accumulation capacitance, was 508 A 'H|gh-f|eld stress
metal—oxide—semiconductor field effect transistowos- (787 MViem), with the capacitor biased in accumulation,
FETS were obtained by this methddAlthough this tech-  Was used to examine device rellab_|I|ty. The S8IC inter-
nique can form a hydrogen-terminated surface for 6H—Sic{@Ce Pproperties were characterized by it MH2)
Si—H bonds have a small binding enerdge(_=3.17 eV},® capacitance—voltage&C=V) measurements at room tempera-

thus degrading device resistance against hot-carrier bonjH® ur_1der dark condition a_nd after light iIIumination at deep

bardment. In this work, an alternative surface-passivatiorgeplet'on_' The total deep interface states and fixed charges

technique with NH substituting H is employed to alleviate were estimated from a ledge feature occurred orChV/
inatSyirves and flatband voltage shifidll measurements were

the above problem, because a nitrogen/hydrogen-terminat . . . i .
surface is probably formed during NHannealing, giving carried out under a light-tight and electrically shielded con-
’ dition.

stronger Si-N bondsHs,_y~4.6 eV).° As demonstrated by Figure 1 shows the typical hE-V curves of the two

the following experimental results on electrical properties

and stress-induced degradation, this passivation step is iﬁ_amples under dark conditions, swept in both directions, and

L . o o no appreciable hysteresis occurs, implying little slow traps.
gg\e/i(il:eiffecnve in improving the reliability op-SiC MOS A smaller flatband shift of the NH3 sample than the OX

p-type (000D Si-face 6H—SIC wafers, manufactured by sample indicates reduced positive fixed charges and deep

e . dpnor-type interface states in NH3 oxide, as further demon-
CREE Research, were used in this study. The SiC wafers h yp

o . rated below.
a 5 um epitaxial layer grown on heavily doped substrates.

The dopina level of th itaxial | 405 om -2 Depicted in Fig. 2 are the h€-V curves of the two
e doping level of the epltaX'a ayer wa9<_ cm " samples after light illuminations at deep depletion. A 100 W
The wafers were cleaned using the conventional Radio Cort-

i ) : ungsten lamp was used as the light sodraed the capaci-
poration of AmericdRCA) method followed by a 60 s dip- tors were illuminated for 3 min with a 10 V bias to form an

pingoin 1% HF, and then loaded into a quartz f“maceoaﬁnversion layer. After removing the illuminatio&-V curves
850 °C. After raising to an oxidation temperature of 1100 °Cyyere recorded first from depletion to accumulation and then

in a N, ambienf a 1 h NH treatment on the surface of the from accumulation to depletion. It can be seen that an

interface—state led§eappears when sweeping from deple-
dElectronic mail: laip@eee.hku.hk tion to accumulation, implying that deep donor-type inter-
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FIG. 1. High-frequencyC-V curves of the two kinds of capacitors under FIG. 3. Flatband voltage shifts of the two samples under high-field stressing
dark conditions, swept in two directions: depletion to accumulatitashed  (—7.87 MV/cm) at room temperature. Area of capacitor is 1.8
lines) and accumulation to depletigsolid lineg. Area of capacitor is 1.8 X 107* cn?.

x107* cn?.

where Cqy is the oxide capacitance, electronic chargeA
face states exist at the interface. Moreover, smaller shifts ofievice area, ant, energy gap3.0 eV for 6H-SiC at room
gate voltage at the ledge and flatband voltdg&/c and  temperaturg® Avfb is determined from the flatband capaci-

AVy,) are observed for the NH3 sample than the OX sampletanceCy, (Ref. 10 by using 6H—SiC dielectric constant of
The total deep interface-state density and fixed charge demrygg°
sity can be estimated as follows:

Ci 150\/T/300
c.= J_ ()]
_ Cox/AVg]| n oX tox VN
t_ L
' qAE, Here, tox is oxide thicknessN, acceptor doping density,
and T temperatureK). In Fig. 2a), it can be found that
Cox(|AVi| —|AVa)) AVg=1.25V andAVy,=—4.4 V for the OX sample, and

(2 AVg=-0.75 V andAVy,=—3.3 V for the NH3 sample.
Hence, D; and Q; are estimated to be 1.%40
cm 2eV ! and 1.3 102 cm 2 for the fresh OX sample,
and 1.04 10" cm 2eV ! and 1.06<10'? cm 2 for the
fresh NH3 sample. Smalldd;; and Q; of the NH3 sample
should be associated with NHreatment-induced nitrogen-
hydrogen-terminated SiC surface, because the initial surface
structure is succeeded by the $ISiC interface even after
oxidation® So, it is reasonable to consider the surface passi-
vation as an important issue in improving the interface qual-
ity of SiC MOS devices.

Figure 3 shows the flatband voltage shifts of the two
samples during high-field stressig7.87 MV/cm) at room
temperature. Obviously, a much smalleVy, is obtained for
the NH3 sample. The negativ&Vy, means generations of
donor-type interface states and positive oxide charges. From
Fig. 2(b) and Eq.(1), it can be found that after stressing for
5000 s.D; increases to 3.3810' cm 2eV ! for the OX
sample and 2.22 10! cm 2eV ! for the NH3 sample, i.e.,
ADy=1.59x 10" and 1.18 10" cm 2eV !, respectively.

On the other hand, from the maximuttV/y, at 5000 s stress
time, the increase of effective oxide charge is estimated to be
1.6x 10" cm 2 for the OX sample and 8:310'* cm™?2 for
the NH3 sample. Similar to NO-annealed devitkthe en-
hanced resistance of the NH3 device against the high-field
stress is likely linked to the formation of strong Si—N bonds
-10 5 0 5 during NH; treatment. In addition, during the initial 100 s
(b) Gate Voltage (V) stress time,AVy, should mainly result from pre-existing
_ ~ donor-type interface states and near-interface hole traps,
FIG. 2. High-frequencyC-V curves of the two samples after light ilumi- ek are poth neutral due to electron occupation before
nation at deep depletion, swept in two directiof@.Before and(b) after a L. .
5000 s high-field stressing-7.87 MV/cm) at room temperature. Area of Stréss. From this, it can be deduced that NH3 oxide has much

capacitor is 1.8 10 cn?. fewer donor-type interface state and oxide traps than OX
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