18 research outputs found

    The Tianlin Mission: a 6m UV/Opt/IR space telescope to explore the habitable worlds and the universe

    Full text link
    [Abridged] It is expected that the ongoing and future space-borne planet survey missions including TESS, PLATO, and Earth 2.0 will detect thousands of small to medium-sized planets via the transit technique, including over a hundred habitable terrestrial rocky planets. To conduct a detailed study of these terrestrial planets, particularly the cool ones with wide orbits, the exoplanet community has proposed various follow-up missions. The currently proposed ESA mission ARIEL is capable of characterization of planets down to warm super-Earths mainly using transmission spectroscopy. The NASA 6m UV/Opt/NIR mission proposed in the Astro2020 Decadal Survey may further tackle down to habitable rocky planets, and is expected to launch around 2045. In the meanwhile, China is funding a concept study of a 6-m class space telescope named Tianlin (A UV/Opt/NIR Large Aperture Space Telescope) that aims to start its operation within the next 10-15 years and last for 5+ years. Tianlin will be primarily aimed to the discovery and characterization of rocky planets in the habitable zones (HZ) around nearby stars and to search for potential biosignatures mainly using the direct imaging method. Transmission and emission spectroscopy at moderate to high resolution will be carried out as well on a population of exoplanets to strengthen the understanding of the formation and evolution of exoplanets. It will also carry out in-depth studies of the cosmic web and early galaxies, and constrain the nature of the dark matter and dark energy. We describe briefly the primary scientific motivations and main technical considerations based on our preliminary simulation results. We find that a monolithic off-axis space telescope with a primary mirror diameter larger than 6m equipped with a high contrast chronograph can identify water in the atmosphere of a habitable-zone Earth-like planet around a Sun-like star.Comment: 15 pages, 5 figures, accepted for publication in RAA and is available onlin

    Evaluating the effect of SARS-CoV-2 spike mutations with a linear doubly robust learner

    Get PDF
    Driven by various mutations on the viral Spike protein, diverse variants of SARS-CoV-2 have emerged and prevailed repeatedly, significantly prolonging the pandemic. This phenomenon necessitates the identification of key Spike mutations for fitness enhancement. To address the need, this manuscript formulates a well-defined framework of causal inference methods for evaluating and identifying key Spike mutations to the viral fitness of SARS-CoV-2. In the context of large-scale genomes of SARS-CoV-2, it estimates the statistical contribution of mutations to viral fitness across lineages and therefore identifies important mutations. Further, identified key mutations are validated by computational methods to possess functional effects, including Spike stability, receptor-binding affinity, and potential for immune escape. Based on the effect score of each mutation, individual key fitness-enhancing mutations such as D614G and T478K are identified and studied. From individual mutations to protein domains, this paper recognizes key protein regions on the Spike protein, including the receptor-binding domain and the N-terminal domain. This research even makes further efforts to investigate viral fitness via mutational effect scores, allowing us to compute the fitness score of different SARS-CoV-2 strains and predict their transmission capacity based solely on their viral sequence. This prediction of viral fitness has been validated using BA.2.12.1, which is not used for regression training but well fits the prediction. To the best of our knowledge, this is the first research to apply causal inference models to mutational analysis on large-scale genomes of SARS-CoV-2. Our findings produce innovative and systematic insights into SARS-CoV-2 and promotes functional studies of its key mutations, serving as reliable guidance about mutations of interest

    The application of simultaneous paver liquid cement sprinkling system in the road construction of Yun-Mao Highway

    No full text
    The simultaneous paver liquid cement sprinkling system is the combination of a conventional paver and a simultaneous liquid cement sprinkler. During operation, the cement sprinkler can be installed onto a paver with the use of connectors. When paving the stabilization aggregate mixture, this system sprinkles liquid cement on the working surface. This device can effectively solve the common quality issues such as the formation of cement isolation layer and road pollution, as a result of premature hardening of the pre-sprinkled liquid cement during road construction in high-temperature environments

    Design of a Segmented Mirror with a Global Radius of Curvature Actuation System: Contributions of Multiple Surrogates

    No full text
    Due to fabrication difficulties, separately-polished segmented mirrors cannot meet the co-phasing surface shape error requirements in the segmented telescope system. Applying the global radius of curvature (GRoC) actuation system for the individual segments has become an effective solution in space-based telescopes. In this paper, we designed a segmented mirror with a GRoC actuation system. The direct optimization by numerical simulations has low computational efficiency and is not easy to converge for optimizing the actuation point’s position on the segmented mirror. For this problem, three common surrogates, including polynomial response surface (PRS), radial basis function neural network (RBFNN), and kriging (KRG), were summed to propose the multiple surrogates (MS) which have the higher approximate ability. The surrogates were then optimized through the multi-island genetic algorithm (MIGA), and the segmented mirror met the design requirement. Compared with direct optimization through numerical simulations, the results show that the proposed multiple-surrogate-based optimization (MSBO) methodology saves computational cost significantly. Besides, it can be deployed to solve other complex optimization problems

    Jitter-Robust Phase Retrieval Wavefront Sensing Algorithms

    No full text
    Phase retrieval wavefront sensing methods are now of importance for imaging quality maintenance of space telescopes. However, their accuracy is susceptible to line-of-sight jitter due to the micro-vibration of the platform, which changes the intensity distribution of the image. The effect of the jitter shows some stochastic properties and it is hard to present an analytic solution to this problem. This paper establishes a framework for jitter-robust image-based wavefront sensing algorithm, which utilizes two-dimensional Gaussian convolution to describe the effect of jitter on an image. On this basis, two classes of jitter-robust phase retrieval algorithms are proposed, which can be categorized into iterative-transform algorithms and parametric algorithms, respectively. Further discussions are presented for the cases where the magnitude of jitter is unknown to us. Detailed simulations and a real experiment are performed to demonstrate the effectiveness and practicality of the proposed approaches. This work improves the accuracy and practicality of the phase retrieval wavefront sensing methods in the space condition with non-ignorable micro-vibration

    Multiplex Protein Profiling by Low-Signal-Loss Single-Cell Western Blotting with Fluorescent-Quenching Aptamers

    No full text
    Single-cell western blotting (scWB) is a prevalent technique for high-resolution protein analysis on low-abundance cell samples. However, the extensive signal loss during repeated antibody stripping precludes multiplex protein detection. Herein, we introduce Fluorescent-quenching Aptamer-based Single-cell Western Blotting (FAS-WB) for multiplex protein detection at single-cell resolution. The minimal size of aptamer probes allows rapid in-gel penetration, diffusion, and elution. Meanwhile, the fluorophore-tagged aptamers, coordinated with complementary quenching strands, avoid the massive signal loss conventionally caused by antibody stripping during repeated staining. Such a strategy also facilitates multiplex protein analysis with a limited number of fluorescent tags. We demonstrated FAS-WB for co-imaging four biomarker proteins (EpCAM, PTK7, HER2, CA125) at single-cell resolution with lower signal loss and enhanced signal-to-noise ratio compared to conventional antibody-based scWB. Being more time-saving (less than 25 min per cycle) and economical (1/1000 cost of conventional antibody probes), FAS-WB offers a highly efficient platform for profiling multiplex proteins at single-cell resolution

    High-quality Development of Selenium-enriched Industry in Guangxi Driven by Scientific and Technological Innovation

    No full text
    As the largest natural selenium-enriched soil area in China, Guangxi has achieved a leapfrog development in its selenium-enriched industry through the implementation of major scientific and technological projects driven by selenium-enriched innovation. The selenium-enriched industry has also become a new force in the poverty alleviation industry in Guangxi, making remarkable achievements. While summarizing and sorting out the effective measures and effects of scientific and technological innovation driving the development of selenium-enriched industry, the present paper analyzed some shortcomings and problems in the high-quality development of the selenium-enriched industry driven by the scientific and technological innovation. Finally, in view of the problems, it came up with pertinent recommendations and countermeasures, to better promote high-quality development of the selenium-enriched industry and boost the rural revitalization
    corecore