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Evaluating the effect of SARS-
CoV-2 spike mutations with a
linear doubly robust learner

Xin Wang †, Mingda Hu †, Bo Liu †, Huifang Xu, Yuan Jin,
Boqian Wang, Yunxiang Zhao, Jun Wu*, Junjie Yue*

and Hongguang Ren*

Beijing Institute of Biotechnology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
Driven by various mutations on the viral Spike protein, diverse variants of SARS-

CoV-2 have emerged and prevailed repeatedly, significantly prolonging the

pandemic. This phenomenon necessitates the identification of key Spike

mutations for fitness enhancement. To address the need, this manuscript

formulates a well-defined framework of causal inference methods for

evaluating and identifying key Spike mutations to the viral fitness of SARS-

CoV-2. In the context of large-scale genomes of SARS-CoV-2, it estimates the

statistical contribution of mutations to viral fitness across lineages and therefore

identifies important mutations. Further, identified key mutations are validated by

computational methods to possess functional effects, including Spike stability,

receptor-binding affinity, and potential for immune escape. Based on the effect

score of each mutation, individual key fitness-enhancing mutations such as

D614G and T478K are identified and studied. From individual mutations to

protein domains, this paper recognizes key protein regions on the Spike

protein, including the receptor-binding domain and the N-terminal domain.

This research even makes further efforts to investigate viral fitness viamutational

effect scores, allowing us to compute the fitness score of different SARS-CoV-2

strains and predict their transmission capacity based solely on their viral

sequence. This prediction of viral fitness has been validated using BA.2.12.1,

which is not used for regression training but well fits the prediction. To the best of

our knowledge, this is the first research to apply causal inference models to

mutational analysis on large-scale genomes of SARS-CoV-2. Our findings

produce innovative and systematic insights into SARS-CoV-2 and promotes

functional studies of its key mutations, serving as reliable guidance about

mutations of interest.
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1 Introduction

As of Jan 2023, the coronavirus disease 2019 (COVID-19)

pandemic, caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) (Zhou et al., 2020), has been

ongoing for more than three years, resulting in over 754 million

infections and 6.8 mill ion deaths worldwide (https://

covid19.who.int/). As a paramount characteristic of SARS-CoV-2,

diverse variants have emerged and prevailed repeatedly, driven by

numerous mutations, particularly on the viral Spike protein

(Harvey et al., 2021; Kang et al., 2021). These emerging variants

of SARS-CoV-2 have substantially prolonged the pandemic by

causing repeated epidemics, posing a continuing threat to public

health across the world (Obermeyer et al., 2022).

During the pandemic, the Spike protein of SARS-CoV-2 has

attracted particular attention because it functionally mediates viral

entry into host cells (Shang et al., 2020), and is the target of

antibody-mediated immunity (Gaebler et al., 2021; McCallum

et al., 2021; Shah et al., 2021). Meanwhile, various mutations have

accumulated in the Spike protein, including the receptor-binding

domain (RBD, amino acid position 319-541), which may enhance

viral fitness and give rise to new variants (Harvey et al., 2021). For

instance, the D614G mutation can increase viral infectivity (Hou

et al., 2020; Korber et al., 2020; Yurkovetskiy et al., 2020) and has

been found in almost all the following VoCs (Variant of Concern).
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Therefore, it is crucial to identify key Spike mutations that likely

elevate viral fitness for further research on SARS-CoV-2.

Up until now, millions of genome sequences of SARS-CoV-2

have been submitted and shared globally (Shu and McCauley,

2017), making computational analysis on viral mutations feasible.

As a novel computing method, causal inference model enjoys broad

prospects for applications (Pearl, 2009; Yao et al., 2021). It produces

an unbiased estimation of the effect of a given intervention with

confounding factors (Pearl, 2009; Guo et al., 2020; Yao et al., 2021).

Those models are particularly applicable to mutational analysis on

SARS-CoV-2, in which mutations act as confounding factors to

each other. With the benefits of causal inference models, Spike

mutations can be evaluated according to the statistical contribution

to viral fitness, in the context of large-scale genomes of SARS-CoV-

2. Subsequently, key fitness-enhancing mutations can be identified

and distinguished from numerous mutations, validated for their

mutational effects by various methods, and further applied to

downstream analysis.

This manuscript formulates a well-defined framework that

utilizes causal inference models to estimate the statistical

contribution of Spike mutations to viral fitness across lineages. To

the best of our knowledge, this is the first research to apply causal

inference models to mutational analysis on large-scale genomes of

SARS-CoV-2. This work, as schematically depicted in Figure 1 and

described in detail in the Methodology section, includes the Data
FIGURE 1

Schematic representation for the framework of this study, including the Data Preprocessing, the Effect Estimation, and the Validation and
Application. Genome sequences of SARS-CoV-2 are retrieved and integrated for data curation and feature extraction, which are presented as FASTA
files of bases (A, C, G, and T). In data curation, Spike sequences are aligned to the reference sequence for mutation detection; in feature extraction,
each sequence is mapped into a mutation combination (as a boolean vector representing the existence of mutations in each sequence) with the
corresponding R0, as a row vector in the feature matrix. For each mutation, the causal inference model is utilized to estimate its average treatment
effect (ATE) on the outcome R0, with other mutations serving as observable covariates. Estimated ATE serves as the effect score of each mutation.
Identified key mutations are validated and interpreted by computing methods for detailed mutational influences, including the Spike protein stability,
the human angiotensin-converting enzyme 2 (ACE2) binding affinity, and immune escape. Effect scores can support downstream analysis, including
key mutation identification, region study of the Spike protein, viral fitness and R0 prediction of strains, etc.
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Preprocessing, the Effect Estimation, the Validation and

Application, etc. In the Data Preprocessing stage, 7.7 million

high-quality SARS-CoV-2 complete genome sequences as of May

11, 2022 are retrieved from GISAID website (Shu and McCauley,

2017), aligned for Spike amino acid mutations, and mapped into

mutation combinations with the corresponding basic reproduction

number (R0), as row vectors in the feature matrix. In the Effect

Estimation stage, the causal inference model is utilized for an

unbiased estimation of the average treatment effect (ATE) of each

mutation on the outcome R0. The estimated ATE serves as the effect

score of mutations, based on which important mutations can be

identified. Further, identified key mutations are validated by

computational methods that assess their mutational influences,

including the Spike protein stability, the host cell-surface receptor

(the human angiotensin-converting enzyme 2, ACE2) binding

affinity, and the potential for immune escape. Therefore, key

mutations can be identified, validated, and also interpreted in

details. Based on effect scores as the quantitative assessment of

mutations, important mutations can be recognized and

investigated. From individual mutations to protein regions, this

paper recognizes key protein regions on the Spike protein. This

research even makes further efforts to investigate viral fitness via

mutational effect scores. By the effect score of mutations, the fitness

of SARS-CoV-2 variants is estimated, which can be utilized for viral

fitness prediction by a trained regression. This regression is

validated by BA.2.12.1, which is not used for regression training

but well fits the prediction. Using this method, the transmission

capacity of any new variant can be predicted solely based on the

viral sequence. Moreover, secondary results of causal inference

models can likewise assist further analysis, which may reveal

potential interactions between mutations. This research produces

innovative and systematic insights into SARS-CoV-2 and promotes

functional studies of its key mutations, which may contribute to the

evolutionary characterization of SARS-CoV-2 and the development

of Spike-targeted medicines and vaccines against SARS-CoV-2.
2 Results

This research aims to estimate the statistical contribution of

Spike mutations to the viral fitness of SARS-CoV-2 and identify

important mutations, as depicted in Figure 1. Generally, the Results

section is comprised of four parts. Firstly, this section presents the

preprocessing, core estimation on mutations, and validations of

identified key mutations. Secondly, important mutations on the

Spike protein are explored, particularly from the perspective of

structural conformations. In the next subsection, a regional study

on the Spike protein is conducted to identify critical mutational

regions from individual mutations. Finally, this section investigates

the results of viral fitness and R0 prediction via effect scores.
2.1 Effect score and validation of mutations

In this subsection, we firstly present the estimation on mutations

and the identification of significant mutations. Then, this subsection
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validates mutational effects through computational methods and

supportive references to strengthen the effectiveness of this research.

Additionally, this research conducts a biological experimental study

on mutant RBD based on identified key mutations.

2.1.1 Estimation and identification of important
mutations

In this section, genome data are preprocessed and mutations are

systematically estimated to identify important mutations. For

specific details of the methodology, please refer to the

Methodology section.

Firstly, data are retrieved and preprocessed for downstream core

estimations. Genome sequences of SARS-CoV-2 are downloaded from

GISAID website. A quality examination is conducted on sequences,

after which 7.7 million high-quality complete genomes are retained.

Secondly, mutations on the Spike gene are identified in alignment with

the reference sequence, and infrequent mutations are discarded. Then,

each genome is represented by the combination of mutations, as a

boolean vector representing the existence of mutations. Meanwhile,

the basic reproduction number (R0) of each genome is quantified

according to the variant type (Campbell et al., 2021; Liu and Rocklöv,

2021), serving as the viral fitness of SARS-CoV-2. Therefore, each

genome can be represented by a boolean vector along with R0, as a

row in the feature matrix. For a sound estimation, mutations observed

in less than two different combinations will be discarded and finally

107 mostly frequent amino acid mutations on the Spike protein

remain for further estimation. An overview of 107 studied

mutations, covering their sequence statistic and R0 distribution, is

illustrated in Supplementary Figure 1.

After the preprocessing, the core estimation on individual

mutations is performed without any explicit normalization

required. All the samples (rows) of the feature matrix are fed to

the Linear Doubly Robust Learner for training. The average

treatment effect (ATE) of each mutation is then estimated, serving

as the effect score. This score represents the statistical contribution of

the corresponding mutation to the viral fitness (R0) across linages.

Based on the effect score of mutations, important mutations can be

identified for further validations and studies. Mutations are sorted by

the effect score and important mutations can be identified based on

requirements such as top ten or top twenty mutations.

2.1.2 Validation of mutational effects
The effect score quantifies the statistical contribution of a given

mutation to the viral fitness, enabling identification of important

mutations. However, the score only provides an overall estimate,

and the detailed effect as well as full results from this model require

validating. This section mainly validates the functional effect of

identified key mutations in three major effects: Spike stability, ACE2

binding affinity, and immune escape. Computational methods are

employed for these validations. Besides, relevant references are

provided to supplement our understanding of mutational effects.

For further information and specific details of the methodology,

please refer to the Methodology section.

This section focuses on the top and bottom twenty mutations,

presenting their effect scores, validated effects, and supportive

references in Table 1. For the top twenty mutations listed in
frontiersin.org
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TABLE 1 Effect score of the top and bottom twenty mutations, with model metrics, effect validations, and supportive references.

Mutation VoC
strains

Effect
Score

P-
value MSE

Validations

Stability Affinity Escape References

Top twenty mutations

T478K d, ο 1.9298 0.0000 0.1244 + ++ − (Starr et al., 2020; Du et al., 2021; Starr et al., 2022)

D614G
a, b, g, d,
ο

0.6786 0.0000 0.5586 + − − (Hou et al., 2020; Korber et al., 2020; Yurkovetskiy et al., 2020)

S704L ο 0.5466 0.3050 0.7041 ++ ++ + NA

H655Y g, ο 0.2628 0.0000 0.2689 ++ ++ − (Braun et al., 2021; Zhu et al., 2022; Bloom and Neher, 2023)

N501Y a, b, g, ο 0.2578 0.0000 0.0495 − + −
(Starr et al., 2020; Du et al., 2021; Teruel et al., 2021; Starr et al.,

2022; Bloom and Neher, 2023)

V213- None 0.2332 0.1570 7.1004 NA NA ++ NA

S477N ο 0.1614 0.0000 0.1008 + + − (Chen et al., 2020; Starr et al., 2020; Starr et al., 2022)

P26- ο 0.1316 0.0000 0.0315 NA NA − NA

Q498R ο 0.1263 0.0000 0.0313 ++ ++ + (Starr et al., 2020; Queirós-Reis et al., 2021; Starr et al., 2022)

S371F ο 0.1120 0.0000 0.0221 + ++ + (Miller et al., 2022; Nutalai et al., 2022)

R408S ο 0.1114 0.0000 0.0419 − − − (Sztain et al., 2021; Bloom and Neher, 2023)

T95I ο 0.0899 0.1700 0.1056 ++ − + (Kannan et al., 2021; Bloom and Neher, 2023)

L24- ο 0.0795 0.0000 0.0299 NA NA + NA

E484K b, g 0.0755 0.0050 0.0416 + ++ +
(Starr et al., 2020; Du et al., 2021; Greaney et al., 2021; Starr

et al., 2022; Bloom and Neher, 2023)

T376A ο 0.0736 0.0000 0.0356 − − ++ NA

V213G ο 0.0722 0.1630 0.0674 − + ++ (Nersisyan et al., 2022)

P681H a, ο 0.0705 0.0000 0.0725 NA NA ++ (Haynes et al., 2021)

A222V d 0.0661 0.1840 0.0441 − ++ + (Kannan et al., 2021; Bloom and Neher, 2023)

N764K ο 0.0656 0.0000 0.0170 ++ ++ − NA

D405N ο 0.0602 0.0000 0.0301 − + + (Sztain et al., 2021)

Bottom twenty mutations

R190S g -0.0087 NA 0.0266 − − − NA

G446S ο -0.0087 NA 0.0263 − − + (Cao et al., 2022; Bloom and Neher, 2023)

Q173H None -0.0095 NA 0.0188 − − + NA

K1191N None -0.0120 0.4280 2.0803 NA NA − NA

D80Y None -0.0122 0.0290 0.1972 ++ − ++ NA

Y145- None -0.0149 0.1450 0.0263 NA NA − NA

H69- a, ο -0.0157 0.4360 0.0444 NA NA − (Kemp et al., 2021)

P681R d -0.0173 0.0140 0.0841 NA NA ++ (Liu et al., 2022)

A570D a -0.0187 NA 0.0426 + + − NA

T572I None -0.0193 NA 0.0403 ++ + + (Bloom and Neher, 2023)

R158- None -0.0243 NA 0.0155 NA NA − NA

L18F b, g -0.0265 0.0400 31.1178 − − ++ (McCallum et al., 2021; Bloom and Neher, 2023)

S98F None -0.0325 NA 0.0133 − − ++ (Bloom and Neher, 2023)

P26S g -0.0337 0.2670 27.9788 − − ++ NA

(Continued)
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Table 1, except P26- mutation, possess one or more validated

positive functional influences, supported by either computational

validations, literature references, or both. For instance, the T478K

mutation is known to stabilize the Spike protein and significantly

enhance the binding affinity between Spike and ACE2 (Starr et al.,

2020; Starr et al., 2022). The D614G mutation, found in VoCs since

early 2020, may be involved in Spike stability, viral replication, and

Spike conformation shifting, thus improving viral infectivity and

transmissibility (Hou et al., 2020; Korber et al., 2020; Yurkovetskiy

et al., 2020). As a key mutation in BA.2.12.1 strains (Rodino et al.,

2022), S704L is another high-scoring mutation that has contributed

positively across all three perspectives by computational methods of

validations, indicative of its possibly compound effects, although it

has not been extensively studied by scholars. Overall, most of the

top twenty mutations identified in this research can possess at least

one validated positive effect on viral fitness, demonstrating the

effectiveness of our estimation.

For a comparative study, Table 1 also presents the bottom

twenty mutations. In contrast, those mutations only possess one or

no significant positive influence. Furthermore, computing analysis

and literature references indicate that five mutations of the bottom

twenty mutations have no significant positive effect. By comparing

top and bottom twenty mutations, it becomes clear that top

mutations are significantly more contributive than the bottom

ones in our ranking results.

In terms of related VoCs, most of the top twenty mutations

listed in Table 1 are typical for VoCs, with the exception of the

V213- mutation. Conversely, over half of the bottom twenty

mutations listed in Table 1 are not typical for VoCs. Additionally,

most of the top mutations in Table 1 have been found in Omicron

strains, except for three mutations (V213-, E484K, and A222V).

Accordingly, mutations of VoCs, particularly those found in

Omicron variants, generally have high effect scores due to

their contributions.

Based on the above discussion, we can confidently conclude that

the top mutations identified by our model may be instrumental in

enhancing viral fitness, potentially more so than the bottom

mutations. Therefore, effect scores can effectively evaluate and

identify important mutations, showing the effectiveness of

this research.
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2.1.3 Biological study on mutant RBD
The aforementioned study utilizes causal inference models to

identify the top twenty mutations with computationally validated

fitness enhancements. This section further details the design of

mutant RBD proteins based on those mutations and evaluates their

affinity to ACE2 through biological experiments. For specific

methodology details, please refer to the Methodology section.

With the chosen mutations within the RBD region, we have

designed two new RBD sequences with key positions replaced by

selected mutations (RBD-1: T478K, N501Y, S477N, Q498R, S371F,

R408S, E484K; RBD-2: T478K, N501Y, S477N, Q498R, R408S,

E484K, D405N). Supplementary Table 2 also shows the details of

mutant RBDs. Those mutant RBD proteins are intended to enhance

viral fitness. In the biology laboratory, the mutant RBDs are

expressed, purified, and their ACE2 binding affinity is evaluated

compared to the wildtype RBD (RBD-WT).

The mutant RBD proteins are successfully expressed and

purified, as demonstrated in Supplementary Figures 2A–C. The

ACE2 affinity is estimated, with the results presented in

Supplementary Table 2 and detailed binding kinetics shown in

Supplementary Figure 2D. In the biological experiment, the mutant

RBD proteins, particularly RBD-1, exhibit stronger affinity to ACE2

than RBD-WT. Therefore, these mutation combinations are found

to be contributive to the enhancement of RBD-ACE2 binding

affinity and further improvement of SARS-CoV-2 viral fitness.

The computational validations, supportive references, and

biological experiments described herein demonstrate the

effectiveness of this study and the feasibility of further analysis. The

effect score of all 107 mutations is provided as a Supplementary file.
2.2 Key mutation identification on the
Spike protein

Based on the effect score of mutations, key fitness-increasing

mutations can be recognized. This section aims to identify and

discuss important mutations on the Spike protein, with a particular

focus on the structural conformation.

Firstly, key fitness-enhancing mutations can be distinguished

and studied by their quantified contributions. We utilize effect
TABLE 1 Continued

Mutation VoC
strains

Effect
Score

P-
value MSE

Validations

Stability Affinity Escape References

Y144V None -0.0361 NA 0.0255 − + − NA

L5F None -0.1210 0.0460 0.7098 NA NA − NA

W152C None -0.1489 0.1550 40.3863 ++ − ++ (Queirós-Reis et al., 2021)

A701V b -0.1624 NA 1.0577 ++ − ++ NA

D253G None -0.5367 0.4360 33.1941 NA − − (Bloom and Neher, 2023)

S13I None -0.7669 0.1670 0.1036 NA NA − (Queirós-Reis et al., 2021)
The effect score represents the statistical contribution of Spike mutations to the viral fitness. MSE represents the Mean Square Error of the corresponding model. The mutational effect is validated
in the Spike protein stability, ACE2 binding affinity, the potential for immune escape, and supporting references, abbreviated as Stability, Affinity, Escape, and References, respectively. Symbol
representations: ++, highly positive effect; +, potential positive effect; −, no significant positive effect; NA, not applicable. VoC strains related to each mutation are represented in Greek letters. The
mutation with no validated positive effect is in red.
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scores to identify important mutations, and further analyze them

through Spike subunits and mutational occurrences, on the treemap

in Supplementary Figure 3. Supplementary Figure 3 illustrates

mutations organized by subunits, in which the size of each

rectangle represents the effect score, and the color represents the

count of mutational occurrences. Generally, the overall size of the

S1 subunit is considerably larger than that of S2, suggesting that the

former may be more contributive to viral fitness elevation.

Furthermore, it is worth noting that the effect score of mutations

is not necessarily correlated with mutation count. While some long-

accumulated mutations, such as D614G and T478K, play a

significant role in enhancing viral fitness, others like V213- and

S704L, which have emerged more recently, can still achieve high

effect scores through their contributions despite fewer occurrences.

Additionally, important mutations can be studied by examining

their location and function on the overall structural conformation

of the Spike protein. To investigate high-scoring mutations from a

structural perspective, we have visualized residues of the top ten

mutations in the Spike-ACE2 complex in Figure 2. The closed

conformation of the Spike (i.e., receptor-inaccessible state) is also

visualized in Supplementary Figure 4 to facilitate a comparison

study. Overall, the analysis highlights that mutations can be closely

correlated with their locations and structural functions, as

evidenced by literature references. Notably, four mutations

(S477N, T478K, Q498R, and N501Y), occur in the binding

interface between Spike and ACE2 within the receptor-binding

domain (RBD, amino acid position 319-541), indicating their

potential involvement in the Spike-ACE2 interaction. Supporting
Frontiers in Cellular and Infection Microbiology 06
this notion, Table 1 and relevant references suggest that these

mutations can increase binding affinity (Chen et al., 2020; Starr

et al., 2020; Queirós-Reis et al., 2021; Teruel et al., 2021; Starr et al.,

2022). Another mutation of interest is S371F, which occurs in the

RBD and has been reported to increase Spike stability and ACE2

affinity, and is also involved in immune escape (Queirós-Reis et al.,

2021; Nutalai et al., 2022). Moreover, S371 residue may participate

in the conformational transition of Spike between the open state

(Figure 2) and closed state (Supplementary Figure 4), namely the up

and down positions of RBD, respectively (Gur et al., 2020). Two

mutations, P26- and V213-, are found within the N-terminal

domain (NTD, amino acid position 14-303). NTD can be the

target of human monoclonal antibodies (mAbs) (Amanat et al.,

2021; McCallum et al., 2021), suggesting that these mutations could

potentially contribute to the immune evasion of SARS-CoV-2

(Amanat et al., 2021; McCallum et al., 2021). For the D614G

mutation, aside from its influence on Spike stability and viral

replications (Hou et al., 2020; Korber et al., 2020), it can

participate in the Spike conformation shift toward an ACE2

binding-competent state, before viral membrane fusion with host

cells (Shang et al., 2020; Yurkovetskiy et al., 2020). In the

subdomain linking S1 to S2, the H655Y mutation gives rise to a

less tight loop that wraps the furin cleavage finger, thereby

enhancing infectivity in the presence of N501Y (Zhu et al., 2022).

In terms of S704L, despite the lack of supportive references for

functional effects, validations on mutational effects by

computational methods in Table 1 have verified its effect on Spike

stability, ACE2 affinity, and immune escape.
A B

FIGURE 2

(A) Residues of the top ten mutations represented by red spheres, in the Spike-ACE2 complex (PDB: 7A94) (Benton et al., 2020; Wrobel et al., 2020),
visualized by Visual Molecular Dynamics (VMD) (Humphrey et al., 1996; Stone et al., 2013). ACE2 is colored in cyan. The Spike monomer binding with
ACE2 is colored, with the other monomers in grey. (B) Close-up view of the binding interface between Spike and ACE2.
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2.3 Regional study of the Spike protein

Different regions may have distinct functions on the Spike

protein. and the mutational effect can be closely tied to these

regional functions. By evaluated mutations in conjunction with

their regional functions, researchers can gain a deep understanding

of the subunits and domains of the Spike protein. This section

conducts a regional study on the Spike protein, which researches

from individual mutations to protein regions in order to recognize

important mutational regions.

The Spike protein of SARS-CoV-2 consists of two subunits (see

Supplementary Figure 4): S1 and S2, divided by the furin cleavage

site at amino acid position 681-685 (Harvey et al., 2021). S1 mainly

includes NTD and RBD, mediating the ACE2 binding to host cells,

while S2 functionally conducts the membrane fusion with host cells

(Shang et al., 2020; Harvey et al., 2021). Although S1 and S2 are

both crucial to the Spike protein, they exhibit significant differences

concerning mutations. For a regional study, we illustrate mutations

with positive effect scores in a Manhattan plot (Figure 3). The plot

maps mutations based on their location across the Spike gene on the

x-axis and their effect scores on the y-axis. As shown in Figure 3,

among the top twenty mutations, eighteen are clustered in the S1

subunit, indicating a greater mutational contribution by S1

compared to S2. Specifically, nine mutations occur in RBD,

including the top-scoring T478K mutation. Consequently, RBD

mutations are vastly important to fitness enhancement, which can

be explained by its function of ACE2 binding and immune escape

(Shang et al., 2020; Gaebler et al., 2021; Harvey et al., 2021). NTD

likewise plays a part in viral infection and contains six high-scoring

mutations. Notably, some important mutations, such as H655Y and

P681H, are located near the S1-S2 subunit boundary, which may be

related to the furin cleavage site (Zhu et al., 2022) and facilitate the

conformational shift of Spike (Harvey et al., 2021). In contrast to S1,
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mutations in S2 generally have modest effect scores, with the

exception of S704L and N764K.

To explore the distribution of effect scores in different regions,

we have also displayed the effect score of mutations organized by

subunits/domains, in Supplementary Figure 5, including both

positive and negative scores. Despite the approximate length of S1

and S2, S1 has considerably more mutations, especially high-scoring

ones, making it more contributive to fitness elevation. Conversely,

the S2 subunit can be considerably more conserved with fewer

mutations compared with S1 (Shah et al., 2021). Of the 81

mutations in S1, 46 mutations are concentrated in NTD, but

most scores for mutation in NTD are modest. Compared with

other regions, RBD generally has a higher distribution of effect

scores. Due to its crucial function, RBD serves as an important

domain in the fitness enhancement of SARS-CoV-2.
2.4 Viral fitness and R0 prediction

Evaluated individual mutations can provide an estimate of the

fitness score for different SARS-CoV-2 strains. This section makes

further efforts to explore the viral fitness and R0 prediction of

SARS-CoV-2 strains using effect scores.

Since individual mutation has been evaluated, the fitness score

for a given sequence can be defined as the sum of effect scores for its

mutations. The original Wuhan strain (wildtype) has a fitness score

of zero, which serves as a baseline for the fitness score.

We compare the fitness score and R0 for both the wildtype and

VoCs in Supplementary Figure 6. Supplementary Figure 6

demonstrates that the rank by the fitness score is consistent with

that of R0, indicating a correlation between the two sides. To

visualize the correlation, we have further plotted those strains as

points in Figure 4, in which the x-axis represents the fitness score
FIGURE 3

Manhattan plot of mutations with positive effect scores across the Spike gene. The top twenty mutations are explicitly labelled. The vertical dashed line
represents the S1-S2 subunit boundary (amino acid position 685). The horizontal dashed line represents the lower limit of the top twenty mutations. The
blue and yellow rectangles represent the region of the N-terminal domain (NTD) and the receptor-binding domain (RBD), respectively.
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and the y-axis shows the R0 value. The plot reveals a clear

correlation, which can be represented by a regression line. All

points except subsequent BA.2.12.1 are used to train a polynomial

regression (with degree 3). These points are generally located within

the 75% confidential interval (CI) and are close to the regression

line. The regression line after BA.2 predicts values other than

training. As a validation, the value of BA.2.12.1 is subsequently

plotted, which fits well with the predicted values. This close

agreement between the predicted line and the validation

BA.2.12.1 demonstrates the effectiveness of the fitness score in

predicting R0.

Further, the historical fitness score of SARS-CoV-2 is explored.

Given the many strains that have emerged during each period, the
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historical fitness score is calculated as the overall fitness during a

specific period. This score is determined by the weighted sum of

effect scores, with the weight being the mutation frequency during

that time period. The historical fitness score from January 2020 to

April 2022 is presented in Figure 5, along with the contribution of

RBD and NTD. This figure demonstrates a steady increase in the

historical viral fitness score during the pandemic, which coincides

well with the contemporaneous emergence of VoCs. For instance,

the D614G strain rose to prominence in Feb 2020 (Korber et al.,

2020), leading to an increase in fitness at that time. Similar increases

can be observed with the emergence of the Alpha, Delta, and

Omicron variants, respectively. The viral fitness increase has been

accelerating over time, especially since the emergence of Delta and

Omicron. As for Spike regions, the contribution of RBD has

significantly increased, from being a minority in 2020 to

becoming the majority since mid-2021. Similarly, the

contributions of NTD and other regions have increased, although

not to the same extent as RBD.
3 Discussion

The Spike protein is of paramount importance to the viral

fitness of SARS-CoV-2, especially in terms of transmissibility

(Shang et al., 2020; Gaebler et al., 2021; Harvey et al., 2021), and

has been extensively studied. This manuscript concentrates on

estimating the statistical contribution of Spike mutations and

identifying key Spike mutations for viral fitness. While individual

mutations such as D614G (Hou et al., 2020; Korber et al., 2020;

Yurkovetskiy et al., 2020) and N501Y (Starr et al., 2020; Teruel et al.,

2021; Starr et al., 2022) have been studied, extensive assessment of

mutational contributions in the context of large-scale genomes still

remains challenging. The challenge lies in the fact that SARS-CoV-2
FIGURE 4

Polynomial regression of fitness score and R0. The regression is
trained by all points except BA.2.12.1, with the shaded area
representing the 75% confidence interval. The point of BA.2.12.1 is
subsequently illustrated as a validation.
FIGURE 5

Monthly historical fitness score of SARS-CoV-2. The line represents the historical fitness score. Stacked bars show the contribution of different Spike
regions. The emergence of strains is indicated: the D614G strain, Alpha, Delta, and Omicron.
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mutations often act as confounding factors to each other, making

evaluations on an individual mutation a challenging issue. However,

causal inference, one of the most promising methods in data

science, produces an unbiased estimation of the treatment effect

on outcomes, as a function of observable characteristics of samples

(Pearl, 2009; Pearl and Mackenzie, 2018; Guo et al., 2020; Yao et al.,

2021). It is designed to solve the statistical problem in which

variables are confounding factors to each other, and is therefore

naturally applicable to the mutational analysis of SARS-CoV-2.

With the help of causal inference models, Spike mutations can be

evaluated, identified, and utilized for further analysis.

To employ causal inference models, a quantitative phenotype is

required for representing viral fitness as the outcome variable. In

this paper, R0 is chosen as the outcome variable because it clearly

reveals viral transmissibility, which is one of the most important

quantitative phenotypes for viral fitness. Moreover, the estimation

of R0 for SARS-CoV-2 variants has been extensively studied and

widely recognized (Campbell et al., 2021; Liu and Rocklöv, 2021).

Therefore, R0 can be considered a representative and qualified

measure of viral fitness. Likewise, other phenotypes of SARS-CoV-2

can be used for causal inference models as long as quantitated.

Hence, this work can be transferred and applied to other

quantitative phenotypes, and even to other viral genomic data.

It is worth noting that the estimation of causal inference models

only provides an effect score for each mutation, and the detailed

mutational effect is supposed to be validated and interpreted by

other methods. To confirm the functional effect of significant

mutations, this study utilizes computational methods to explore

mutational effects in three major aspects: Spike stability, ACE2

affinity, and immune escape. As demonstrated in the Results

section, the top twenty mutations exhibit more contributive

effects than the lower-ranked ones, and thus they can be more

important to viral fitness. Moreover, the validation results are

consistent with existing literature references. This consistency

provides a solid cornerstone for the validation and explanation of

detailed effects of identified critical mutations, and further

demonstrates the effectiveness of effect scores.

Although this paper includes three important mutational effects

in validations, there are still other aspects of effects, such as viral

replication and viral pathogenicity. Therefore, it is important to

note that a mutation with no validated influence in Table 1 does not

necessarily imply no positive effect at all. To provide supplementary

validation, literature references have also been included. For

instance, while the R408S mutation shows no remarkable

influence by computing validations in Table 1, previous research

suggests that it may facilitate the opening of RBD (Sztain et al.,

2021). Another noticeable mutation is S704L, which is positively

influential in Table 1 by computing results. Further investigation is

needed as S704L has not been thoroughly investigated, making it an

interesting direction for future research.

It is worth noting that the primary focus of mutational effect

research may have shifted. For early mutations like D614G, existing

literatures has concentrated on how it increases viral

transmissibility (Hou et al., 2020; Korber et al., 2020), by affecting

Spike stability and viral replications, etc. In contrast, for newly-

emerged mutations, especially those exclusive to Omicron strains,
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such as G446S and R493Q, relevant studies primarily focus on their

mutational effects on the immune escape, particularly antibody

evasion (Cao et al., 2022; Iketani et al., 2022; Wang et al., 2022). This

shift in focus can be attributed to the increased significance of

immune evasion. On the one hand, a growing number of

individuals have possessed antibodies against SARS-CoV-2 over

time, either through infection or vaccination, which may potentially

increase the selection pressure for SARS-CoV-2. On the other hand,

the emergence and spread of diverse variants of SARS-CoV-2

highlight the importance of studying the efficacy of current

vaccines in protecting against the virus.

Another interesting phenomenon is that the effect of Spike

mutations can be highly correlated with the protein region. For

instance, RBD functionally conducts ACE2 binding (Shang et al.,

2020) and can be the target of antibodies (Gaebler et al., 2021).

Consequently, many mutations that enhance ACE2 binding affinity

and enable immune evasion occur in the RBD region, making it a

region with high-scoring mutations. Recently emerged RBD

mutations, such as R346K, F486V, and R493Q have been found to

be closely related to antibody evasion in Omicron subvariants like

BA.2.12.1 and BA.4/5, making RBD one of themost important regions

for mutational effects (Iketani et al., 2022; Wang et al., 2022). Another

domain, NTD, has the highest number of mutations, but their average

scores are modest, so they may be not vastly noticeable. Although

some mutations in NTD, e.g., T95I, V213G, and A222V, may be

involved with immune escape (Kannan et al., 2021; Nersisyan et al.,

2022), the specific function of NTD and its mutations still remain to

be elucidated. Besides, some important mutations locate at or near the

furin cleavage site. As the furin cleavage site is essential to SARS-CoV-

2 (Harvey et al., 2021; Johnson et al., 2021), these mutations may have

a functional correlation with it, like P681R (Liu et al., 2022) and

H655Y (Zhu et al., 2022).

Interestingly, the S1 and S2 subunits can be entirely different

when it comes to mutations. As depicted in Figure 3, S1 appears to be

more prone to high-scoring mutations, while S2 tends to be relatively

conserved with fewer mutations. While both subunits possess

important functions for the Spike protein, such as receptor-

binding for S1 and membrane fusion for S2, it is difficult to

determine which side holds greater importance. Nevertheless, these

two subunits demonstrate entirely different mutation tendencies.

This phenomenon may be an interesting issue for further studies.

One possible explanation for this pattern could be due to the fact that

the S1 subunit is usually the target of antibodies (Amanat et al., 2021;

Gaebler et al., 2021; McCallum et al., 2021), thus allowing for

multiple mutations to occur for viral immune evasion. On the

other hand, the conservation of S2 may also make it a potential

target of medicine and general vaccine development against the rapid

immune escape of SARS-CoV-2 (Shah et al., 2021).

In the present study, the contributions of mutations are learned

from R0, and conversely, reveal the relative viral fitness. However,

during the model training, BA.2.12.1 strains are not specifically

distinguished and are recognized as ordinary BA.2 strains. Despite

this, BA.2.12.1 still achieves a higher fitness score than BA.2, hence

the fitness score can effectively reveal viral fitness. Additionally, the

regression in Figure 4 is not trained using BA.2.12.1 strains, but

BA.2.12.1 fits well within the regression, which validates the
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effectiveness of the model. Therefore, for an unknown strain of

SARS-CoV-2, its relative fitness and R0 can be computationally

predicted, solely based on its viral sequence, by computing its fitness

score by mutations and further estimating R0 according to the

regression. This capability of prediction is significant for

monitoring and prewarning newly-emerged strains of SARS-

CoV-2.

One interesting phenomenon in Figure 5 is the synchronization

between the increase in historical fitness and the emergence of

variants. The driving forces behind may be related to the selective

sweep of SARS-CoV-2 (Wang et al., 2022), in which previous

predominant strains are swept and replaced by new ones. During

the selective sweep, the prevalence of new variants implies possible

adaptive advantages compared with previous ones, which can lead

to a higher fitness score. According to the upward trend of the

regression line in Figure 4, future strains with higher scores may

enjoy significantly enhanced vial fitness such as transmissibility and

immune escape, which may further prolong the pandemic.

Accordingly, it is important to strengthen epidemiological

surveillance of new SARS-CoV-2 variants.

Causal inference models can also provide secondary

information through interpretability. By using other covariates

mutations as features, SHAP values can interpret the model of

each mutation and the relation between the current mutation and

others (Lundberg and Lee, 2017). Supplementary Figure 7 interprets

the model of the top mutations, which represent the unidirectional

influence of other mutations on the object mutation. For mutations

that are mutually top influential to each other, their bidirectional

influences may reveal possible mutation interactions. These

interactions are categorized into positive and negative ones,

according to the mutational co-occurrence and exclusion,

respectively. Supplementary Figure 8 illustrates the possible

interactions discovered in this study, which require further

investigation and confirmation.
4 Methodology

This work is schematically depicted in Figure 1, consisting of

the Data Preprocessing, the Effect Estimation, the Validation and

Application, etc.
4.1 Data preprocessing

4.1.1 Data source and data curation
From GISAID Website (Shu and McCauley, 2017), SARS-CoV-

2 complete genome sequences as of 11 May 2022 are retrieved.

These genome sequences are presented as FASTA files of bases (A,

C, G, and T), and undergo quality examination. The examination

involves two criteria:
Fron
1. Completion - the sequence must be longer than 80% of the

length of the reference sequence.

2. High-quality - the percentage of invalid characters should be

below 10%.
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Only retrieved sequences that meet both criteria are retained,

while others are discarded. As such, 7,699,174 high-quality

complete genome sequences remain for downstream analysis

(refer to Supplementary_FastaID.csv for additional information).

For each genome, amino acid mutations on the Spike gene are

identified in alignment with the reference sequence Wuhan-Hu-1

(GenBank accession number NC_045512). Spike mutations with

global occurrence of less than 1,500 are considered infrequent and

are consequently discarded.

4.1.2 Feature extraction
The feature matrix is generated to represent Spike sequences by

mutation combinations and R0. Each Spike sequence is mapped

into a mutation combination, and then represented by a boolean

vector of Spike mutations, as a row vector in the feature matrix,

along with R0 according to the variant type (Campbell et al., 2021;

Liu and Rocklöv, 2021). Supplementary Table 3 provides detailed

information on how R0 is assigned based on previous studies

(Campbell et al., 2021; Liu and Rocklöv, 2021). Mutation

combinations with either a global occurrence of less than 1500 or

an inestimable R0 are excluded from the analysis. Since replicate

rows in the feature matrix do not affect the unbiased estimation of

causal inference, redundant rows are merged. To ensure accurate

estimation, mutations are supposed to be observed in at least two

mutation combinations, otherwise they will be discarded.

Consequently, 107 major amino acid Spike mutations are retained

for further studies. Note that while this study focuses on these 107

mutations, additional mutations may be considered as long as they

pass the preprocessing examination.
4.2 Effect estimation

Mutations are modelled and evaluated successively. Specifically,

Linear Doubly Robust Learner (Linear DRL) (Bang and Robins, 2005;

Dudıḱ et al., 2014) is employed, with an assumption of linear form of

treatment effect (Bang and Robins, 2005; Dudıḱ et al., 2014). For each

mutation, a Linear DRL is utilized for an estimation of its effect across

lineages. For a given mutation Mi as treatment T, its effect score is

estimated by qT, namely the average treatment effect (ATE) on

outcomes, with R0 as the observed outcome Y and other mutations

as observable characteristics (covariates) X on samples. The

estimation is based on all the observed i.i.d. samples from the

feature matrix, with the j-th row being the sample (Yj,Tj,Xj). This

approach uses all available samples for the model training, without

requiring explicit normalization or a separate validation or testing set.

qT = E½Y (T=1) − Y (T=0)jX�
4.3 Validation of mutational effects

This study employs computing methods to validate the

functional influences of mutations, including Spike protein

stability, ACE2 binding affinity, and potential for immune escape.
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4.3.1 Spike protein stability
FoldX5 (Schymkowitz et al., 2005) is performed to estimate

mutational effects on the stability of Spike protein in closed

conformation (PDB: 7DDD) (Zhang et al., 2021). Specifically,

FoldX5 evaluates quantitative changes in the Gibbs energy of

protein folding caused by mutations (DDG, unit: kcal/mol)

(Schymkowitz et al., 2005). Mutation effects on DDG include

highly positive effect (DDG< −1.0), potential positive effect (−1.0<

DDG< 0), and no significant positive effect (DDG > 0). Indels

(insertions and deletions) and mutations at unmodeled residues

of the protein are inapplicable to FoldX5 and are labelled as NA

(not applicable).

4.3.2 ACE2 binding affinity
FoldX5 (Schymkowitz et al., 2005) is performed to estimate

mutational effects on the Spike-ACE2 complex (PDB: 7A94)

(Benton et al., 2020; Wrobel et al., 2020). FoldX5 evaluates

quantitative changes in the Gibbs energy caused by mutations

(DDG, unit: kcal/mol) (Schymkowitz et al., 2005). Mutation effects

on DDG include highly positive effect (DDG< −1.0), potential

positive effect (−1.0< DDG< 0), and no significant positive effect

(DDG > 0). Indels (insertions and deletions) and mutations at

unmodeled residues of the protein are inapplicable to FoldX5 and

are labelled as NA (not applicable).

4.3.3 Immune escape
A system named Constrained Semantic Change Search (CSCS)

(Hie et al., 2021) is utilized to estimate semantic changes (Ds)
of SARS-CoV-2 Spike sequence for the potential for immune

escape caused by mutations (Hie et al., 2021). Mutation effects on

semantic changes include highly positive effect (Ds > 0.9), potential

positive effect (0.75< Ds< 0.9), and no significant positive effect

(Ds< 0.75).
4.4 Biological study on mutant RBD

For biological experimental investigations, mutant RBD

proteins based on top RBD mutations in Table 1 are expressed,

purified, and then evaluated for ACE2 binding affinity, compared

with the wildtype RBD.

4.4.1 RBD expression and purification
The wildtype and mutant RBD proteins are expressed and

purified by the method in prior works (Liu et al., 2022). Mutant

RBDs are designed by mutation sites into pPICZaA-RBD-WT,

according to the mutation in Supplementary Table 1. The plasmids

of pPICZaA-RBD are linearized by BglII and transformed into the

glycoengineered yeast (Liu et al., 2020). Positive clones of RBD are

screened by western blot analysis. After the shake-flask culture, the

product is centrifuged at 8500× g rpm for 15 min. The harvested
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supernatant is purified as described previously (Liu et al., 2022).

Purified proteins are analyzed by sodium dodecyl sulfate–

polyacrylamide gel electrophoresis (SDS-PAGE).

4.4.2 RBD-ACE2 affinity
The binding kinetics of RBDs to His-tagged human

angiotensin‐converting enzyme 2 (ACE2) is assayed and

evaluated by the ForteBio Octet™ QKe System (Pall ForteBio

Corporation) (Guo et al., 2022). RBDs and ACE2 are diluted to

400 nM with HBS-EP (Cytiva), and an additional well with only

HBS-EP is set up as a control. ACE2 is bound to the probe capturing

the His tag. After the stabilization of RBD-ACE2 binding, the

dissociation is performed in HBS-EP. The dissociation constant

(Kd) is calculated by Data Analysis Software 7.0 (Pall

ForteBio Corporation).
5 Conclusions

This manuscript proposes and formulates a well-defined

framework of an unbiased approach for evaluating and identifying

key Spike mutations of SARS-CoV-2 by causal inference models, in

the context of large-scale genomes. By analyzing 7.7 million viral

genome sequences, this study evaluates the contribution of

mutations to viral fitness across lineages, and identifies important

mutations accordingly. As validated, high-scoring mutations possess

one or more positive mutational effects, which demonstrates the

effectiveness of this research. Based on the effect score, key fitness-

enhancing mutations and protein regions have been studied.

Notably, RBD mutations play an important role in the fitness

elevation of SARS-CoV-2. Besides, the fitness and R0 of unknown

SARS-CoV-2 strains can be predicted, solely based on the viral

sequence. This approach provides reliable guidance about mutations

of interest, including some high-scoring but less-studied mutations

like S704L. Moreover, the present work can be transferred to other

quantitative phenotypes of SARS-CoV-2 for evaluating specific

mutational effects, e.g., immune escape. Overall, this approach

produces innovative and systematic insights into SARS-CoV-2

mutations, which may contribute to the evolutionary

characterization of SARS-CoV-2 and the development of Spike-

targeted medicines and vaccines against SARS-CoV-2. As the first

application of causal inference models to mutational analysis on

SARS-CoV-2 genomes, this work may inspire more related

applications and promote the development of interdisciplinary fields.
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