12,128 research outputs found

    Concentrations and sources of polycyclic aromatic hydrocarbons in surface coastal sediments of the northern Gulf of Mexico

    Get PDF
    Zucheng Wang is with the Department of Geography, Northeast Normal University, Changchun, China. -- Zucheng Wang and Zhanfei Liu are with the Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA. -- Kehui Xu is with the Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA – and – the Coastal Studies Institute, Louisiana State University, Baton Rouge, LA, USA. -- Lawrence M Mayer is with the School of Marine Sciences, University of Maine, Walpole, ME, USA. -- Zulin Zhang is with The James Hutton Institute, Aberdeen, UK. -- Alexander S. Kolker is with Louisiana Universities Marine Consortium, Chauvin, LA, USA. -- Wei Wu is with the Department of Coastal Sciences, Gulf Coast Research Laboratory, The University of Southern Mississippi, Ocean Springs, MS, USA.Background: Coastal sediments in the northern Gulf of Mexico have a high potential of being contaminated by petroleum hydrocarbons, such as polycyclic aromatic hydrocarbons (PAHs), due to extensive petroleum exploration and transportation activities. In this study we evaluated the spatial distribution and contamination sources of PAHs, as well as the bioavailable fraction in the bulk PAH pool, in surface marsh and shelf sediments (top 5 cm) of the northern Gulf of Mexico. Results: PAH concentrations in this region ranged from 100 to 856 ng g−1, with the highest concentrations in Mississippi River mouth sediments followed by marsh sediments and then the lowest concentrations in shelf sediments. The PAH concentrations correlated positively with atomic C/N ratios of sedimentary organic matter (OM), suggesting that terrestrial OM preferentially sorbs PAHs relative to marine OM. PAHs with 2 rings were more abundant than those with 5–6 rings in continental shelf sediments, while the opposite was found in marsh sediments. This distribution pattern suggests different contamination sources between shelf and marsh sediments. Based on diagnostic ratios of PAH isomers and principal component analysis, shelf sediment PAHs were petrogenic and those from marsh sediments were pyrogenic. The proportions of bioavailable PAHs in total PAHs were low, ranging from 0.02% to 0.06%, with higher fractions found in marsh than shelf sediments. Conclusion: PAH distribution and composition differences between marsh and shelf sediments were influenced by grain size, contamination sources, and the types of organic matter associated with PAHs. Concentrations of PAHs in the study area were below effects low-range, suggesting a low risk to organisms and limited transfer of PAHs into food web. From the source analysis, PAHs in shelf sediments mainly originated from direct petroleum contamination, while those in marsh sediments were from combustion of fossil fuels.Marine [email protected]

    Tunability of Superconducting Metamaterials

    Full text link
    Metamaterials are artificial structures with unique electromagnetic properties, such as relative dielectric permittivity and magnetic permeability with values less than 1, or even negative. Because these properties are so sensitive to loss, we have developed metamaterials comprised of superconducting waveguides, wires, and split-ring resonators. An important requirement for applications of these metamaterials is the ability to tune the frequency at which the unique electromagnetic response occurs. In this paper we present three methods (unique to superconductors) to accomplish this tuning: temperature, dc magnetic field, and rf magnetic field. Data are shown for dc and rf magnetic field tuning of a single Nb split-ring resonator (SRR). It was found that the dc field tuning was hysteritic in the resonant frequency data, while the quality factor, QQ, was less hystertic. The rf power tuning showed no hysteresis, but did show supression of the QQ at high power. Magneto-optical images reveal inhomogeneous magnetic vortex entry in the dc field tuning, and laser scanning photoresponse images for a YBa2_2Cu3_3O7δ_{7-\delta} SRR reveals the current distribution in the rings.Comment: RexTEX, 4 pages of text with 6 figures plus 1/5 page of references, submitted for the 2006 Applied Superconductivity Conference; Revised edition: spelling corrections, and we removed mention of measuring the Current Density and replaced this with a more explicit definition of what we measure (with reference

    A Unified Mechanism on the Formation of Acenes, Helicenes, and Phenacenes in the Gas Phase.

    Get PDF
    A unified low-temperature reaction mechanism on the formation of acenes, phenacenes, and helicenes-polycyclic aromatic hydrocarbons (PAHs) that are distinct via the linear, zigzag, and ortho-condensed arrangements of fused benzene rings-is revealed. This mechanism is mediated through a barrierless, vinylacetylene mediated gas-phase chemistry utilizing tetracene, [4]phenacene, and [4]helicene as benchmarks contesting established ideas that molecular mass growth processes to PAHs transpire at elevated temperatures. This mechanism opens up an isomer-selective route to aromatic structures involving submerged reaction barriers, resonantly stabilized free-radical intermediates, and systematic ring annulation potentially yielding molecular wires along with racemic mixtures of helicenes in deep space. Connecting helicene templates to the Origins of Life ultimately changes our hypothesis on interstellar carbon chemistry

    Cell-free DNA release during programmed cell death in ischemia reperfusion injury

    Get PDF
    Transplantation is invariably associated with acute allograft injury caused by ischemia reperfusion injury (IRI). This injury causes cells of the allograft to undergo various forms of programmed cell death including apoptosis and necroptosis. During programmed cell death, immunogenic molecules are released from cells, one of which is cell-free DNA (cfDNA). We hypothesize that cfDNA is released by microvascular endothelial cells (MVECs) during programmed cell death of IRI and that cfDNA acts as both a biomarker for cellular injury as well as a biologically active molecule capable of amplifying inflammation and organ injury. Our results indicate that cfDNA is released by MVECs under both apoptotic and necroptotic conditions in vitro, as well as during IRI in an in vivo mouse model. We have also shown that cfDNA release is ameliorated by blocking necroptosis in vivo with the use of RIPK3-/-mice that are incapable of undergoing necroptosis. Lastly, we have shown that cfDNA is capable of activating immune cells, showing that NK cell activation markers are upregulated when purified NK cells are subjected to cfDNA in vitro. Our results indicate that cfDNA is a potential biomarker of allograft injury in a renal transplant setting. Donor-derived cfDNA from blood or urine may give rise to novel non-invasive tests to diagnose graft damage. cfDNA also appears to exacerbate inflammation by activating immune cells to produce pro-inflammatory cytokines which further escalates inflammation. It may be prudent to inhibit the release of cfDNA in a transplant scenario, a goal our lab is currently working towards

    Foveation for Segmentation of Mega-Pixel Histology Images

    Get PDF
    Segmenting histology images is challenging because of the sheer size of the images with millions or even billions of pixels. Typical solutions pre-process each histology image by dividing it into patches of fixed size and/or down-sampling to meet memory constraints. Such operations incur information loss in the field-of-view (FoV) (i.e., spatial coverage) and the image resolution. The impact on segmentation performance is, however, as yet understudied. In this work, we first show under typical memory constraints (e.g., 10G GPU memory) that the trade-off between FoV and resolution considerably affects segmentation performance on histology images, and its influence also varies spatially according to local patterns in different areas (see Fig. 1). Based on this insight, we then introduce foveation module, a learnable “dataloader” which, for a given histology image, adaptively chooses the appropriate configuration (FoV/resolution trade-off) of the input patch to feed to the downstream segmentation model at each spatial location (Fig. 1). The foveation module is jointly trained with the segmentation network to maximise the task performance. We demonstrate, on the Gleason2019 challenge dataset for histopathology segmentation, that the foveation module improves segmentation performance over the cases trained with patches of fixed FoV/resolution trade-off. Moreover, our model achieves better segmentation accuracy for the two most clinically important and ambiguous classes (Gleason Grade 3 and 4) than the top performers in the challenge by 13.1% and 7.5%, and improves on the average performance of 6 human experts by 6.5% and 7.5%

    On Gammelgaard's formula for a star product with separation of variables

    Full text link
    We show that Gammelgaard's formula expressing a star product with separation of variables on a pseudo-Kaehler manifold in terms of directed graphs without cycles is equivalent to an inversion formula for an operator on a formal Fock space. We prove this inversion formula directly and thus offer an alternative approach to Gammelgaard's formula which gives more insight into the question why the directed graphs in his formula have no cycles.Comment: 29 pages, changes made in the last two section

    Spatial dependence of the superexchange interactions for transition-metal trimers in graphene

    Full text link
    This study examines the magnetic interactions between spatially-variable manganese and chromium trimers substituted into a graphene superlattice. Using density functional theory, we calculate the electronic band structure and magnetic populations for the determination of the electronic and magnetic properties of the system. To explore the super-exchange coupling between the transition-metal atoms, we establish the magnetic magnetic ground states through a comparison of multiple magnetic and spatial configurations. Through an analysis of the electronic and magnetic properties, we conclude that the presence of transition-metal atoms can induce a distinct magnetic moment in the surrounding carbon atoms as well as produce an RKKY-like super-exchange coupling. It hoped that these simulations can lead to the realization of spintronic applications in graphene through electronic control of the magnetic clusters.Comment: 6 pages, 5 Figur

    On the tidal evolution of the orbits of low-mass satellites around black holes

    Full text link
    Low-mass satellites, like asteroids and comets, are expected to be present around the black hole at the Galactic center. We consider small bodies orbiting a black hole, and we study the evolution of their orbits due to tidal interaction with the black hole. In this paper we investigate the consequences of the existence of plunging orbits when a black hole is present. We are interested in finding the conditions that exist when capture occurs. The main difference between the Keplerian and black hole cases is in the existence of plunging orbits. Orbital evolution, leading from bound to plunging orbits, goes through a final unstable circular orbit. On this orbit, tidal energy is released on a characteristic black hole timescale. This process may be relevant for explaining how small, compact clumps of material can be brought onto plunging orbits, where they may produce individual short duration accretion events. The available energy and the characteristic timescale are consistent with energy released and the timescale typical of Galactic flares.Comment: 7 pages, 6 figure
    corecore