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Abstract. Segmenting histology images is challenging because of the sheer
size of the images with millions or even billions of pixels. Typical solutions
pre-process each histology image by dividing it into patches of fixed size
and/or down-sampling to meet memory constraints. Such operations incur
information loss in the field-of-view (FoV) (i.e., spatial coverage) and the
image resolution. The impact on segmentation performance is, however, as yet
understudied. In this work, we first show under typical memory constraints
(e.g., 10G GPU memory) that the trade-off between FoV and resolution
considerably affects segmentation performance on histology images, and its
influence also varies spatially according to local patterns in different areas (see
Fig. 1). Based on this insight, we then introduce foveation module, a learnable
“dataloader” which, for a given histology image, adaptively chooses the ap-
propriate configuration (FoV/resolution trade-off) of the input patch to feed
to the downstream segmentation model at each spatial location (Fig. 1). The
foveation module is jointly trained with the segmentation network to maximise
the task performance. We demonstrate, on the Gleason2019 challenge dataset
for histopathology segmentation, that the foveation module improves segmen-
tation performance over the cases trained with patches of fixed FoV/resolution
trade-off. Moreover, our model achieves better segmentation accuracy for the
two most clinically important and ambiguous classes (Gleason Grade 3 and
4) than the top performers in the challenge by 13.1% and 7.5%, and improves
on the average performance of 6 human experts by 6.5% and 7.5%.

1 Introduction

The histology images are ultra-high resolution microscope images from Hematoxylin
and Eosin-stained biopsy, which form the primary source of information for cancer de-
tection, grading and treatment planning. However manual analysis of histology images
is expensive and prone to false negative detection due to their enormous size (up to
100,0002 pixels), motivating the development of accurate automated methods. Deep
learning (DL) based approaches have been recently adopted to improve the segmenta-
tion of high-resolution images in recent years. However, modern DLmethods cannot op-
erate on mega(giga)-pixel histology images, given the limited GPUmemory constraints.
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Fig. 1: A 4-class Gleason grade segmentation example under two trade-off configura-
tions: “BigPatch-LowResolution” with patch size of 50002 pixels and downsampling
rate of 0.2 and “SmallPatch-HighResolution” with patch size of 20002 pixels and
downsampling rate of 0.5.

To mitigate this issue, histology images are typically dissected into smaller patches
and/or down-sampled to fit into the available GPUmemory [1]. To exploit all the avail-
able GPU memory thus requires one to trade off field of view (FoV), i.e. spatial extent
of context, against resolution, i.e. level of image detail. Tuning this trade-off exhaus-
tively is expensive [2], and as a result, it is commonly set by crude developer intuition.

A considerable amount of work has attempted to alleviate the issue of subjectivity
in tuning this trade-off by learning to merge multi-scale information, in both medical
imaging [3] and computer vision [4,5]. These works optimise model performance by
exploiting the information from multi-scale sources. Specifically, they learn feature rep-
resentations from multiple parallel networks, then aggregate learnt multiple scale repre-
sentations before making the final prediction. DeepMedic [3] is one pioneering example
in this category, having two parallel networks and applied to brain lesion segmentation.
Another is [6], which is designed to work specifically with histopathology images. In
general computer vision, the authors of [5] boost the learning efficiency of multi-scale
information by enforcing global and local streams to interactively exchange information
with each other. On the other hand, Chen et al.[4] perform multi-scale feature aggrega-
tion via an attention mechanism, which weights the prediction score from multi-scale
parallel networks. However, these approaches: 1) construct multiple parallel networks,
which can be computationally expensive; 2) typically use limited (2 or 3) manually
selected scales; 3) need to to rely on specific choices of neural network architecture.

Our contributions: In this work, we first demonstrate empirically on a public
histology segmentation dataset that the choice of the input patch configuration (i.e.,
FoV/resolution trade-off) considerably influences the segmentation performance on
different classes. Secondly, motivated by this finding, we then propose foveation module,
a data-driven “data loader” that learns to provide the segmentation network with
the most informative patch configuration for each location in a ultra-high-resolution
image. The foveation module can be trained jointly in an end-to-end fashion with
the segmentation network to optimise the task performance. The inspiration for our
method roots from the ways in which pathologist segment high-resolution images —
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starting from a low-resolution bird’s-eye view of the whole image 3, the annotators
navigate their gaze through different locations and zoom in to the right extent to
collect both local and contextual information. The magnification scale is controlled by,
what is called, foveation (i.e., the process of adjusting the focal length of the eye, the
distance between the lens and fovea). We also note that our work bears some similarity
with the recent approach proposed by Katharopoulos et al.[7] in which attention
weights are learned over the mega-pixel histology image to sample patches from a small
informative sub-locations for the downstream classification task. However, our work
differs from theirs in that we aim to select the best patch configuration at every spatial
location for the downstream segmentation task, while their method tries to select the
most informative subset of all spatial locations for the classification task. We evaluate
the benefits of our foveation module on the Gleason2019 challenge dataset, where
we show it boosts segmentation performance with little extra computational cost.

2 Methods

In this section, we first perform empirical analysis to illustrate the impact of the patch
FoV/resolution trade-off on the histology segmentation performance and its spatial
variation across the image. Motivated by this finding, we then propose foveation mod-
ule, a module that learns to provide the segmentation network with the most informa-
tive patch configuration for each location in an ultra-high-resolution histology image.

2.1 Effects of Patch Configuration on Histology Segmentation

The first part of our work is a comprehensive empirical analysis, investigating a key
question: “How does the FoV/resolution of training input patches affect the final
segmentation performance?”. To this end, we validate our method on a multi-class
segmentation dataset: the Gleason2019 Challenge 4 which contains 322 histology
images of average size ≈5000×5000 pixels. Each image is labelled by a subset of
6 annotators (all experts). Each pixel is labelled into one from four classes (Benign,
Gleason Grade 3,4,5). Preprocessing for empirical analysis: A subset of 298 training
examples have been used in the first part of our work. We fuse 6 annotations into
1 using pixel-level probabilistic analysis by STAPLE [8]. Each image is paired with 1
STAPLE fused annotation as gold standard. Pre-processing for foveation experiments:
we extract central part of input images x of size 44002 from the original histology
images to ensure the constant size of input image. We randomly split 298 images
into a training subset (268) and a testing subset (30).

Then, we perform three sets of experiments: 1) the first investigates the impact of
FoV only; 2) the second investigates the impact of resolution; and 3) the last studies the
combination of the FoV and resolution (ie the FoV/resolution trade-off). To study the
impact of the FoV, we divide the original 50002 images into 2562, 5122, 7682 patches,
respectively. It is noted all sampled patches share the same original resolution. In the

3 Screen display or human vision typically have lower resolutions than that of the ultra-high
resolution images of interest in this work.

4 https://gleason2019.grand-challenge.org

https://gleason2019.grand-challenge.org
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second set of experiments, we downsample the original 50002 images using four different
downsampling rates of 0.03, 0.06, 0.12 and 0.22, respectively. To examine the trade-off
between FoV and resolution, we first fix our memory limit at 10G. Then we divide the
original images into 11002, 20002, 30002, 40002, 50002, respectively, to create five sets
of patches, which share the same resolution. Afterwards, we further perform downsam-
pling on each set of the five sets of patches, with different downsampling rates all to an
identical size of 11002. We illustrate the results of the total three sets of experiments
in blue curves in Fig. 2(a). In Fig. 2(a), the red star represents the trade-off which has
the best mean performance of the 4 classes across all of the experiments. Meanwhile,
the trade-offs of best performances for each class across all of the experiments, are also
highlighted in different shaped marks (see Legends in Fig. 2(a)). It is clear that there is
no single “best fit” sampling size for best mean performance and best performances for
each class, simultaneously.We also show visual results of the best segmentation for each
class in Fig. 2(b). As visually illustrated in Fig. 2(b), each trade-off is only optimal for
each pattern at each spatial location. This shows that the standard sampling strategy
is not optimal overall. This motivates our novel Foveation module to learn to sample
the most optimal training patches, which will be introduced in the following section.

Fig. 2: Quantitative (left) and qualitative (right) evidence of different optimal
FoV/resolution trade-offs for different classes. (a): The best patch configuration (i.e.,
FoV/resolution trade-off) for segmentation performance overall and for individual
classses are highlighted. (b): A visual illustration of the class-wise variation of the
best patch configuration. Here the size of FoV decreases from left to right and
Downsampling rate increases from left to right. In each row, the best segmentation
result among the five trade-off configurations is highlighted, which corresponds to
the trade-off configuration in Left. (c): The corresponding segmentation performance
measured in intersection over union (IoU) are reported.
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2.2 Foveation Module

The inspiration for our method is to combine information from multiple scales and
locations, as the fovea of the eye does that automatically adjusting the focal length
according to different regions of interests via simply a glimpse over the scene. Our
method consists of two components (see Fig.3 for a schematic); (1) Foveation module
that takes a low-resolution version of a mega-pixel input image and generates impor-
tance weights over a set of patches with varying spatial FoV/resolution at different
pixel locations, (2) Segmentation network that processes the input patches based on
the outputs of the foveation module, and estimates the corresponding segmentation
probabilities. This segmentation network can be any existing models.

For each mega-pixel image x∈RH×W×C where H, W, C denote the height, width
and channels respectively, we compute its lower resolution version xlr∈Rh×w×C. The
resolution of xlr is empirically determined based on performance. We also define

a “patch-extractor” function PE(x,i)={p(i)
1 (x),...,p

(i)
D (x)} that extracts a set of D

patches of varying field-of-view/resolution (but the same number of pixels to tackle the
FoV-resolution trade-off when the input patch size is fixed due to limitedmemory) from
the full resolution image x centered at the corresponding ith pixel in xlr (see Fig.3 for
a set of examples). Foveation module, Fθ, parametrised by θ, takes the low-resolution
image xlr as the input and generates the probability distributions Fθ(xlr)∈ [0,1]h×w×D

over patches PE(x,i) at respective spatial locations i∈{1,...,wh} in xlr.
Based on the outputs of the foveation module, at each location i, we compute

the input patch by taking the weighted average of the extracted patches of varying
resolutions/sizes:

p(i)(x):=

D∑
d=1

f
(i)
d (xlr)·p(i)

d (x) (1)

where f
(i)
d (xlr) denotes the value of Fθ(xlr) at i

th pixel, and quantifies the “importance”

of the dth patch at that location. The importance weights [f
(i)
1 (xlr),...,f

(i)
D (xlr)] sum

up to one. The weighted average of the multiple patches based on the estimated proba-
bilities ensures the full differentiability of the objective function with respect to θ. This
approach can be viewed as the mean approximation of the “stochastic hard” attention
employed in [7], similar to the approach in [9] and the “deterministic soft” attention in
[10]. We then subsequently feed this input patch to segmentation network, Sφ

(
p(i)(x)

)
,

parametrised by φ to estimate the segmentation probabilities within the spatial extent
covered by the patch with the smallest field of view in PE(x,i). During training, the pa-
rameters {θ,φ} of both the foveation module and the segmentation network are jointly
learned to minimise the segmentation specific loss function (e.g., cross entropy) by
performing stochastic gradient descent. We extract patches at different locations and
process them separately, which can be computationally expensive. For computational
efficiency, for each mega-pixel image x, we randomly select a subset of pixels (locations)
from its low resolution counterpart xlr, compute the corresponding input patches ac-
cording to eq. (1), feed them to the segmentation network and compute the losses. At
inference time, we segment the whole mega-pixel image x by aggregating predictions
Sφ
(
p(i)(x)

)
at different locations i. We open-source the code at https://github.com/

lxasqjc/Foveation-for-Segmentation-of-Mega-pixel-Histology-Images.

https://github.com/lxasqjc/Foveation-for-Segmentation-of-Mega-pixel-Histology-Images
https://github.com/lxasqjc/Foveation-for-Segmentation-of-Mega-pixel-Histology-Images


6 Authors Suppressed Due to Excessive Length

Fig. 3: Architecture schematic.

3 Network Architectures and Implementation Details

Training: For all experiments, we employ the same training scheme unless otherwise
stated. We optimize parameters using Adam [11] with initial learning rate of 2e10−5

and β=0.9 and train for 50 epochs. We apply batches size of 2. For patch extractor
we extract a set of 5 patches at field-of-view {11002,20002,29002,38002,44002} pixels
and apply a down-sampling factor of {1,0.55,0.38,0.29,0.25} to have identical 11002

pixels in extracted patches.

Architectures: The Foveation module was defined as a light weighted CNN archi-
tecture (0.1M parameter) comprised of 3 convolution layers, each with 33 kernels
follower by BatchNorm and Relu. The number of kernels in each respective layer is
{40,40,5}. A softmax layer is added at the end. All convolution layers are initialised
following He initialization [12]. The Segmentation module was defined as a deep CNN
architecture (66M parameter) referring to HRNetV2-W48 in [13] (details provided in
the original literature). The segmentation network is initialized with HRNetV2-W48
pre-trained on Imagenet dataset as provided by the author[13].

4 Results

In this section, we 1) qualitatively inspect the learnt spatial distribution of the
FoV/Resolution Trade-off; 2) quantitatively compare our method with seven base-
lines, average expert and top Gleason2019 challenge performers; 3) provide visual
results of our segmentation performance against the set of six baselines.

For one input image x, based on the output of foveation module Fθ(xlr), we
calculate the weighted average patch size over all localtions, and refer to as Average
Patch Size Map (APSM). In Fig.4, we pick one validation image as input and plot
its APSM at three different epochs. As shown in Fig.4, as training progresses, the
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average patch sizes at regions with small patterns (e.g. nuclei) shrink, while the
average patch sizes at regions with large patterns (e.g. glands or background) expand.
The observation evidenced that our method can learn the spatial distribution the
FoV/Resolution Trade-off.

Fig. 4: The evolution of the learned weighted average patch size during training for one
validation image. The brighter the colour, the higher the resolution and smaller patch.

To quantitatively evaluate our method we perform comparisons with three groups
of baselines: Group 1) five one-hot baselines which force the probability distributions
from foveation module Fθ(xlr) to be fixed one-hot vectors, thus selecting only one
scale per baseline from the given set of 5 patches with varying FoV/resolution. A
uniform random one-hot baseline that at each location randomly selects one from
the given set of 5 patches with varying FoV/resolution, referred to as Baseline-

Random. And an average baseline that assigns equal probability f
(i)
d of 1/5 over

the set of 5 patches with varying FoV/resolution, referred to as Baseline-Average;
Group 2) average expert baseline measure the 6 annotators’ performance taking
STAPLE fused golden standard as ground truth; Group 3) top 2 results of the
Gleason2019 challenge leaderboard https://gleason2019.grand-challenge.org/

Results/ ranked by overall all classes average segmentation accuracy. We also collect
highest segmentation accuracy of each classes as a third Single-Class-Best case
for comparison. We quantify segmentation performance of group 1 and group 2 by
Intersection over Union (mIoU). We quantify segmentation performance of group 3 via
pixel accuracy for each class, to be consistent and comparable against results released
on the leaderboard. It is worth noting that for all results we remove the “Gleason Grade
5” class in evaluation, as it is under represented - only 2% pixels in the given dataset.

We first compare our method against the baseline approaches in Group 1. The
results are shown in Table 1. Our method achieved better segmentation performance
(mIoU/IoU) over the 7 one-hot baselines described above in i) overall four class average,
ii) benign class and iii) class Grade 4. The performance is also comparable with the
best of class Grade 3. The results show that our method combines the advantages of dif-

https://gleason2019.grand-challenge.org/Results/
https://gleason2019.grand-challenge.org/Results/
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ferent FoV/Resolution trade-off over the five baselines. This point is also qualitatively
illustrated in Fig 5. The results against the baseline of Group 2 are shown in last row of
Table 1, where our model improves on the average performance of 6 human experts by
6.5% and 7.5% for the two most clinically important and ambiguous classes (Gleason
Grade 3 and 4), and gives comparable performance for overall average and the Benign
class. Group 3 results are shown in Table 2, where our model achieves better segmen-
tation accuracy against the top performers in the challenge for the two most clinically
important and ambiguous classes (Gleason Grade 3 and 4) by 13.1% and 7.5%.

Table 1: Mean IoU (column 2) and IoU (column 3-5) on Gleason2019 Histology dataset.
row 2-6: 5 one-hot baselines; row 7: uniform random one-hot baselines; row 8: average
baseline; row 9: our result with foveation approach; row 10: average expert baseline.

Baselines Overall Benign Grade 3 Grade 4

Baseline-11002 0.520 0.810 0.618 0.650
Baseline-20002 0.525 0.805 0.644 0.653
Baseline-29002 0.530 0.810 0.649 0.661
Baseline-38002 0.505 0.764 0.614 0.640
Baseline-44002 0.460 0.675 0.556 0.610
Baseline-Random 0.487 0.722 0.586 0.638
Baseline-Average 0.493 0.788 0.522 0.660
Ours 0.533 0.824 0.630 0.678
Average Expert 0.569 0.839 0.564 0.603

Table 2: Quantitative comparision to Gleason2019 challenge leaderboard results
measured by single class pixel accuracy

Experiment Benign Grade 3 Grade 4

Ours 88.3 83.8 78.1

Overall Top1 95.9 2.24 16.5
Overall Top2 83.0 52.7 54.0
Single-Class-Best 95.9 70.7 70.6

5 Discussion

Motivated by our observation that the FoV/resolution trade-off varies widely, we intro-
duced a new theoretically grounded algorithm for simultaneously learning the spatial
distribution of the trade-off and training a segmentation network that exploits it. Our
method is simple to implement, requiring simply the addition of a ”patch-extractor”
and a light weighted foveation module (CNN). Our approach is complementary to a
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Fig. 5: Qualitative comparison of our method versus the seven baselines on four
example validation images

wide range of existing “multi-resolution” segmentation architectures. In this work we
used HRNetV2, a SoTA very deep multi-scale architecture and enhanced it with the
proposed foveation module. Experiments on the Gleason2019 challenge segmentation
data set show superior performance over single “best fit” trade-offs, average expert
performance, and challenge leaderboard top results, especially for the two most clini-
cally important and ambiguous classes (Gleason Grade 3 and 4). For the typically easy
Benign class, the performance of our approach is slightly lower but still competitive
to the challenge leaderboard top results, and the variation compared to other classes
is anticipated: a) Table 1 shows our method outperforms all seven baselines on the
Benign class and is comparable (1% difference) to average expert performance; b)
Table 2 shows that our Benign-class performance is similar to the leading published.

We acknowledge the noisy nature of the dataset used to demonstrate our approach,
however we believe that it is a good example to illustrate its robustness. The noise in
the annotations is due to minor pattern variations between adjacent Gleason classes
that leads to high variation in experts’ performance in Table 1 and Fig 1 (in supplemen-
tary material). Our method shown promising results on Gleason2019 Tissue microar-
rays (also TMAs) images, we would expect it to perform well onWSI and more generic
non-medical ultra-high resolution image dataset too and would test in future work.

In the current implementation, all scales are searched equally, which means that
all local patterns/classes are treated equally. This does not account well for class
imbalance. In the Gleason challenge, as in many medical image segmentation tasks,
rare classes can be overlooked unless explicitly emphasised during training. Therefore
a key focus for future is to add a weighting mechanism taking care imbalanced classes.
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