472 research outputs found

    Understanding of fraction and its application in unit conversions

    Get PDF
    Many British university students lack confidence in manipulating fractions. In this paper, we take a detailed look into the difficulties that students are experiencing across disciplines. We also introduce a method on how to effectively convert units via manipulating fraction operations. Though this approach to unit conversions is widespread in the United States, particularly in the discipline of Chemistry, it is not well documented or applied within the UK Higher Education sector to the authors knowledge. The method has been frequently used by the authors in Coventry's Mathematics Support Centre with very positive feedback

    Reviewing Coventry University’s Mathematics Support Centre 2016-17:Ideas and Inspiration

    Get PDF
    The academic year 2016-17 was one of outstanding achievement for the sigma Mathematics Support team at Coventry University. We had a further increase in the take-up of sigmas range of services by students from all faculties and our feedback has been enthusiastically positive. Above all, the team has taken some innovative approaches to support and inspire Coventrys ever-growing body of students and staff. This article aims to provide insight into our services and to provide perhaps some inspiration and ideas that other support centres can use

    Experience sharing:Mathematical Contest in Modelling (MCM)

    Get PDF
    In January 2016, Coventry Universitys sigma Mathematics Support Centre (MSC) funded three students for MCM, a multi-day mathematics competition held annually in the USA. This is organised by the Consortium for Mathematics and Its Applications (COMAP) and sponsored by the Mathematical Association of America (MAA), the Society of Industrial and Applied Mathematics (SIAM) and the Institute for Operations Research and the Management Sciences (INFORMS). In this article the team leader and advisor reflect on their experience

    An integrated decision making model for dynamic pricing and inventory control of substitutable products based on demand learning

    Get PDF
    Purpose: This paper focuses on the PC industry, analyzing a PC supply chain system composed of onelarge retailer and two manufacturers. The retailer informs the suppliers of the total order quantity, namelyQ, based on demand forecast ahead of the selling season. The suppliers manufacture products accordingto the predicted quantity. When the actual demand has been observed, the retailer conducts demandlearning and determines the actual order quantity. Under the assumption that the products of the twosuppliers are one-way substitutable, an integrated decision-making model for dynamic pricing andinventory control is established.Design/methodology/approach: This paper proposes a mathematical model where a large domestichousehold appliance retailer decides the optimal original ordering quantity before the selling season and theoptimal actual ordering quantity, and two manufacturers decide the optimal wholesale price.Findings:By applying this model to a large domestic household appliance retail terminal, the authors canconclude that the model is quite feasible and effective. Meanwhile, the results of simulation analysis showthat when the product prices of two manufacturers both reduce gradually, one manufacturer will often waittill the other manufacturer reduces their price to a crucial inflection point, then their profit will show aqualitative change instead of a real-time profit-price change.Practical implications: This model can be adopted to a supply chain system composed of one largeretailer and two manufacturers, helping manufacturers better make a pricing and inventory controldecision.Originality/value: Previous research focuses on the ordering quantity directly be decided. Limited workhas considered the actual ordering quantity based on demand learning. However, this paper considers boththe optimal original ordering quantity before the selling season and the optimal actual ordering quantityfrom the perspective of the retailerPeer Reviewe

    Overexpression of OsRAN2 in rice and Arabidopsis renders transgenic plants hypersensitive to salinity and osmotic stress

    Get PDF
    Nucleo-cytoplasmic partitioning of regulatory proteins is increasingly being recognized as a major control mechanism for the regulation of signalling in plants. Ras-related nuclear protein (Ran) GTPase is required for regulating transport of proteins and RNA across the nuclear envelope and also has roles in mitotic spindle assembly and nuclear envelope (NE) assembly. However, thus far little is known of any Ran functions in the signalling pathways in plants in response to changing environmental stimuli. The OsRAN2 gene, which has high homology (77% at the amino acid level) with its human counterpart, was isolated here. Subcellular localization results showed that OsRan2 is mainly localized in the nucleus, with some in the cytoplasm. Transcription of OsRAN2 was reduced by salt, osmotic, and exogenous abscisic acid (ABA) treatments, as determined by real-time PCR. Overexpression of OsRAN2 in rice resulted in enhanced sensitivity to salinity, osmotic stress, and ABA. Seedlings of transgenic Arabidopsis thaliana plants overexpressing OsRAN2 were overly sensitive to salinity stress and exogenous ABA treatment. Furthermore, three ABA- or stress-responsive genes, AtNCED3, AtPLC1, and AtMYB2, encoding a key enzyme in ABA synthesis, a phospholipase C homologue, and a putative transcriptional factor, respectively, were shown to have differentially induced expression under salinity and ABA treatments in transgenic and wild-type Arabidopsis plants. OsRAN2 overexpression in tobacco epidermal leaf cells disturbed the nuclear import of a maize (Zea mays L.) leaf colour transcription factor (Lc). In addition, gene-silenced rice plants generated via RNA interference (RNAi) displayed pleiotropic developmental abnormalities and were male sterile

    Modeling and Performance Evaluation of Multistage Serial Manufacturing Systems with Rework Loops and Product Polymorphism

    Get PDF
    This paper studies multistage serial manufacturing systems with the integrated consideration of machine failures, process defects, multiple rework loops, etc. In particular, multiple rework loops and product polymorphism lead to a more complex conversion of internal material flows, and therefore it's difficult to model and analyse such manufacturing systems. A modular modeling method based on Generalized Stochastic Petri Nets (GSPN) is presented to characterize the material flows, it is capable of representing the processing differences resulting from product polymorphism comparing with traditional Markov model or Queuing network model. By analysing the model, the processing ratio of each workstation is inferred. Using 2M1B (two-machine and one-buffer) Markov cell model as the building blocks, which is obtained based on the GSPN models for their isomorphism, an overlapping decomposition method is then developed for evaluating the performance of the multistage serial systems with rework loops. Numerical experiments and a case study of a powertrain assembly line illustrate the efficiency of the proposed method

    A Heuristic Approach to Solve an Industrial Scalability Problem

    Get PDF
    In recent years, the rapid change of market demand is increasing the need for scalability as a key characteristic of manufacturing systems. Scalability allows production capacity to be rapidly and cost-effectively reconfigured in different situation with different requirements and constraints. Our industrial partners are facing quarterly scalability problems involving a multi-unit and multi-product manufacturing system. In this paper, an original approach is presented to solve this kind of problems. Starting from the original manufacturing system configuration and process plan, a set of practical principles are introduced to seek for the feasible configurations; a GA is designed to search in the global solution space. A balancing objective function is defined and used to rank the proposed configurations. A real case study with 4-unit / 4-product situation demonstrates both the validity and efficiency of the proposed approach

    Operation-based Configuration Complexity Measurement for Manufacturing System

    Get PDF
    open5Configuration not only determines the material flow pattern but also influences the production cost in a manufacturing system. The diversity of the products and growing demands for system flexibility increases the complexity of the configuration. In this paper, an operation-based approach is proposed to measure the configuration complexity of a manufacturing system. The configuration complexity models of the stations are built with single operation, several operations and their parallel types. Subsequently, an operation-based configuration complexity model of the overall system is used to measure the configuration complexity of a manufacturing system using the information entropy. Then, the relationship of the complexity between operations and stations is quantitatively described. An assembly line example is presented to validate the model. The results show that the proposed complexity measurement may evaluate the configuration complexity of a manufacturing system.openGuoliang, Fan*; Aiping, Li; Giovanni, Moroni; Liyun, Xu; Xuemei, LiuFan, Guoliang; Li, Aiping; Moroni, Giovanni; Xu, Liyun; Liu, Xueme

    Antiperovskite Li3OCl Superionic Conductor Films for Solid-State Li-Ion Batteries.

    Get PDF
    Antiperovskite Li3OCl superionic conductor films are prepared via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. The applicability of Li3OCl as a solid electrolyte for Li-ion batteries is demonstrated
    corecore