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Abstract

This paper studies multistage serial manufacturing systems with the integrated consideration of machine failures, process defects, multiple rework 
loops, etc. In particular, multiple rework loops and product polymorphism lead to a more complex conversion of internal material flows, and 
therefore it’s difficult to model and analyse such manufacturing systems. A modular modeling method based on Generalized Stochastic Petri 
Nets (GSPN) is presented to characterize the material flows, it is capable of representing the processing differences resulting from product 
polymorphism comparing with traditional Markov model or Queuing network model. By analysing the model, the processing ratio of each 
workstation is inferred. Using 2M1B (two-machine and one-buffer) Markov cell model as the building blocks, which is obtained based on the 
GSPN models for their isomorphism, an overlapping decomposition method is then developed for evaluating the performance of the multistage 
serial systems with rework loops. Numerical experiments and a case study of a powertrain assembly line illustrate the efficiency of the proposed 
method.

© 2017 The Authors. Published by Elsevier B.V.
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1. Introduction

This paper studies multistage serial manufacturing systems 
with rework loops and product polymorphism. In many 
manufacturing systems, some defective products are 
unexpectedly produced due to process variations or other 
factors. Usually rework is done instead of scrapping these 
products for economic reasons as seen in semiconductor, glass, 
steel, food industries, etc. [1]. The products in the systems can 
be often divided into four states, the qualified, the defective, the 
rework, and the scrapped. To manage, operate and improve the 
performance of such systems, modeling and performance 
evaluation are necessary and important.

A number of numerical analysis methods have been 
proposed for stochastic manufacturing systems with unreliable 
machines, multiple failure modes, preventive maintenance, etc. 
Queueing network models, Markov models and decomposition 
methods have been widely used as a faster and more viable 

alternative to simulation in the analysis of the systems [2]. 
When considering quality issues, the material flows in the 
systems, including rework flow and scrap flow, complicate 
modeling and make it more challenging to study the systems 
[3]. Connors et al. [4] proposed an open queueing network 
model for analysis of semiconductor manufacturing facilities, 
where the wafer lot sizes are affected by rework and scrap. 
Kang et al. [5] analyzed a parallel machine with rework. A 
dispatching algorithm is given to evaluate total tardiness, 
maximum lateness and mean flow-time, etc. Ju et al. [6], Lin et 
al. [7] and Biller et al. [8] studied multistage manufacturing 
systems with a single rework loop, where defective products are 
mostly assumed to be randomly generated with Bernoulli-type 
quality failure. Being constructed as a stochastic-flow network, 
systems are divided into several general processing paths and 
one rework path using decomposition technique. In addition, 
Liu et al. [9] proposed an approximation method of 
transforming an M-machine re-entrant line into a 2M-machine

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of The 50th CIRP Conference on Manufacturing Systems

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/156873052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


472   Zhang Heng et al.  /  Procedia CIRP   63  ( 2017 )  471 – 476 

serial line. However, models for evaluating multistage 
manufacturing systems with generally complex Markovian 
machines are not available. Some researchers have extended 
approximate decomposition methods, such as using two 
machines and one finite intermediate buffer (2M1B) [10] or
three machines and one buffer (3M1B) [11] as building blocks. 
Considering multiple rework loops, Cao et al. [12] developed a 
new 3M1B model in addition to the 2M1B models. In the 
decomposition approach, both 2M1B and 3M1B models are 
used.

In practice, the production systems are more complex. For 
instance, there are several rework loops in power train assembly 
lines. Due to the construction of the system, the defective and 
scrapped must be sent out of the line only through the rework 
entrance as well as the rework being sent back on line. Before 
assembly processes, each workstation will read the RFID 
information of the product and identify the state of product. 
While the product is the qualified from upstream or the one 
need to be reworked here, the process will start. Otherwise, the 

product will be immediately sent out of the workstation if it’s 
the defective, or the scrapped from upstream, or the rework that 
will not be reworked here but downstream. However, the 
material flows information is not characterized in these models 
above. Thus these models are not extensible to multistage 
manufacturing system with multiple rework loops and product 
polymorphism.

In this paper, an optimal solution to model and evaluate the 
performance of multistage serial manufacturing systems with 
rework loops and productive polymorphism is proposed. Unlike 
the previous models proposed in the literature, a model based 
on Generalized Stochastic Petri Nets (GSPN) is presented to 
characterize the complex state transition resulting from the 
conversion of internal material flows. Based on analyzing the 
process differences in the model affected by multiple rework 
loops and products polymorphism and using 2M1B model as 
the building blocks, a decomposition approach is developed for 
evaluating the performance of the systems.

0B 1B 2B mB1mB1W 2W mW

Workstation Workstation with rework entrance Buffer

R
1W

iB1iB
iW

R
1B R

2B

Fig. 1. The manufacturing system with rework loops

2. Problem Formulation and System Modeling

2.1. Problem Formulation

The manufacturing system studied in this paper is 
configured in serial layout. The main line consists of m on-line 
workstations, 1m on-line buffers of finite capacity and r
rework entrances that form 1r rework loops. The rework 
entrances are located on the several workstations. Between two 
rework entrances , 1, 2, , 1jR j r and 1jR adjacent, there 
are 3jm on-line workstations and 1jm on-line buffers. With
other off-line buffers R

jB and off-line pre-rework stations R
jW , 

all of them above construct a standard rework loop jL . Fig. 1 
shows the system with rework loops.

Due to the construction of the system, it is assumed that the 
defective and scrapped from the workstations between R

1jW and 
R
jW which are the workstations with rework entrances, must be 

sent out of the line through the entrance jR , while the rework 
after pre-rework processing must be sent back through 1iR . In 
addition, the defective and scrapped from R

iW , must be sent out 
from the current workstation through iR while the rework 
corresponding must be sent back through iR .

For convenience, the following notations are used throughout 
the paper:

i = The processing rate of workstation , 1, 2, ,iW i m ;
,i ir = The failure and repair rate of , 1, 2, ,iW i m ;

i = The state of workstation iW , {0(down),1(up)}i (see 
assumption 2), 1, 2, ,i m ;

i = The qualified rate of , 1, 2, ,iW i m ;
iPR = The production rate of , 1, 2, ,iW i m ;

ik = The capacity of on-line buffer , 1, 2, , 1iB i m ;
x = The inventory of the system.

We make the following assumptions regarding the system:
1) The workstation won't process the defective or the 

scrapped from the upstream, or the reworked to the
downstream. In addition, the process time of the pre-
rework stations and the transport time are negligible.

2) All workstations are unreliable and subjected to operation-
dependent failures. Therefore, each unreliable workstation 
has two states: up and down.

3) In this model, the capacity of off-line buffers R
jB is infinite. 

the upstream workstation is never starved and the 
downstream workstation is never blocked.

4) The system is based on First Come First Serve (FCFS). 
While the products arrive simultaneously, the product from 
the upstream on-line buffer is a higher priority than the one 
from the off-line buffer. This considers to avoid the 
deadlock which may occur in the system.

5) If the products have been reworked failed, they are marked 
as the scrapped and sent through the entrance specified to 
the scrapped area. Each defective product has only one 
time to be reworked.

2.2. Modeling for Systems

In the system, multiple rework loops and products 
polymorphism lead to a more complex conversion of internal 
material flow. Fig. 2a and Fig. 2b show the material flow 
conversion in the general workstation and the workstation with 
a rework entrance respectively.

Based on Fig. 2, GSPN model blocks of workstations are 
built as shown in Fig. 3a and Fig. 3b respectively. The main 
meanings of places and transitions are shown in Table 1 and 
Table 2.
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Fig. 3. GSPN blocks of the workstations
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Fig .4. GSPN of the system

Table 1. Main meanings of places of Fig. 3a and Fig. 3b model.

Place Meaning of place

1
ip The workstation is ready.

2
ip Load the product and identified its state.

3
ip Product is being processed.

4
ip The product has not been processed.

5
ip Ready to unload the product.

6
ip Break down and stop.

ip Buffer iB .

RI
ip Buffer for products send into rework entrance.

RI
ip Buffer for products out from rework entrance.

Table 2. Main meanings of transitions of Fig. 3a and Fig. 3b model.

Transition Meaning of transition Category

1I
it Load the product and read the information. Immediate

2I
it Process does not start. Immediate

3I
it The product is qualified. Immediate

4I
it The product is defective. Immediate

5I
it The product passes. Immediate

6I
it Unload the product to the downstream. Immediate

1T
it Process start. Timed

2T
it Break down. Timed

3T
it Repair. Timed

Combining the GSPN blocks of workstations and the layout 
of the system, the GSPN of the system is as shown in Fig. 4. To 
simplify the model view, the failure and repair transitions of 
each workstation are not shown in Fig. 4, but still need to be 
considered when calculating.

3. Decomposition of Systems

In this section, we first deduce the processing ratio based on 
analyzing the GSPN model. Then a decomposition method is 
developed for the system with multiple rework loops and 
product polymorphism.

3.1. Analysis of the Workstation

Based on material flow conservation, for a rework loop
, 1, 2, , 1jL j r , the trigger probability , , 1, 2, ,i j ji m of 

1T
it , which means the processing rate in the practice, is directly 

related to the qualified rates , , 1, 2, ,i j ji m . By conversation 
of material flows, ,i j is shown as Eqs. (1).

As Fig. 2b shows, while the workstation iW is the one with 
the rework entrance, the outgoing material flows consist of 1) 
the qualified, 2) the defective and 3) the scrapped flow from the 
current rework loop jL , and 4) the rework flow from the next 
rework loop 1jL . But in fact, the material flow into buffer iB
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consists of 1) the qualified flow from rework loop jL , 4) the 
rework flow from rework loop 1jL . As the processing time of 
2) the defective and 3) the scrapped flow is assumed to be 0, the 
actual trigger probability ,i j for the downstream eventually is 
shown as Eqs. (3).

1,

1 1

1, , , ,
2 1

1

, ,
1,2 1

, 1 1

2, , , ,
3 2

, ,
2 1

2
, 1

1 1 2 1

1
2

, 2, , 1

2 2 1

2

j

j

j j

j

m l

j k j k j l j
l k

i i

k j k j
jk k

i j jm l

j k j k j l j
l k

m m

k j k j
k k

i

i m

1

1,

1

2, , , ,
3 2

1

,

2 2 1
j

j

j
jm l

j k j k j l j m
l k

i m

o

(1)

Where jmo is the compensation parameter of ,jm j for 
considering the rework flow from the next rework loop 1jL .
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  Finally, the actual process rate ,i j of ,i jW in rework loop jL
is as follows:

, , ,i j i j i j (4)

3.2. Decomposition Method for Systems

(1) Approach for 2M1B Subsystem

Let , ,u dx denote the state of the subsystem, and 
, ,u dP x denote the steady-state probability while the 

subsystem is in the state , ,u dx . The balance equations for 
the Markov for the subsystem are presented as:

, 1 , 1, , 1, , 1, ,u d x u d u x u d d xx x xP M P P (5)

As 1xM , , 1u x , , 1d x are the submatrices of the state 
transition matrix A :

0 ,0

,1 1

, 1 1 , 1

, 2 2

i i i

i i

u

d

u k k d k

d k k

M
M

A
M

M

(6)

By solving the matrix equation, the steady-state probabilities
of all the states can be obtained. Subsequently, the following 
performance measurements can be obtained:
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(2) Decomposition Method for Systems

The decomposition method is present as follows:
Step.1 Initialize u

i i , u
i i , u

i ir r , 1, 2, , 1i m ;
1

d
i i , 1

d
i i , 1

d
i ir r , 1, 2, , 1i m .

Step.2 Calculate 2,1,0i iP k , u
iPR , 0,0,1iP and d

iPR .
Step.3 For 2 : 1i m , update u

i , u
ir , u

ie , u
i using Eqs.

(10), (11), (12), (13) respectively and calculate 
0,0,1iP , d

iPR in turn.
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Step.4 For 2 :1i m , update d
i , d

ir , d
ie , d

i using Eqs.
(14), (15), (16), (17) respectively and calculate 

2,1,0i iP k , u
iPR in turn.
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Step.5 Loop Step.3 and Step.4 until: 

1 , 2, 1d u
i i iPR PR i m (18)

max i (19)

Where is a very small positive number.
  Using the decomposition algorithm above, the steady-state 
availability of each on-line workstation A ( )p i and the average 
inventory of each on-line buffer ik can be obtained. The total 
production rate of the qualified SPR can be calculated as 
following:

S 1 2d
m m m mPR PR (20)
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Table 3. Experiment parameters and comparison of results from the analytical and simulation.

Case m Workstation with Rework Entrance r ik
Analytical
SPR

/min-1

Simulation
SPR

/min-1 Error/%
CPU Time for the 

Analytical Approach/s
CPU Time for the 

Simulation/s

1 7 1W , 4W , 7W 2 2 38.9245 38.7897 0.35 0.131 72

2 7 1W , 4W , 7W 2 5 46.9714 45.8159 2.52 0.200 89

3 7 1W , 4W , 7W 2 10 52.0718 50.6376 2.83 0.277 107

4 7 1W , 4W , 7W 2 20 55.4617 54.1880 2.35 0.508 135

5 10 1W , 4W , 7W , 10W 3 2 37.7621 37.6469 0.31 0.281 118

6 10 1W , 4W , 7W , 10W 3 5 46.1255 44.9072 2.71 0.315 139

7 10 1W , 4W , 7W , 10W 3 10 51.4470 49.9542 2.99 0.499 159

8 10 1W , 4W , 7W , 10W 3 20 55.1212 53.7916 2.47 0.815 208

9 16 1W , 4W , 7W , 10W 13W , 16W 5 2 36.5174 36.5740 -0.15 0.468 195

10 16 1W , 4W , 7W , 10W 13W , 16W 5 5 45.1356 44.0888 2.37 0.819 249

11 16 1W , 4W , 7W , 10W 13W , 16W 5 10 50.7076 49.4036 2.64 1.233 331

12 16 1W , 4W , 7W , 10W 13W , 16W 5 20 54.6473 53.4310 2.28 2.018 390

Table 4. Parameters of the Study Case.

Workstation i /min-1
i /min-1

ir /min-1
i /% Workstation i /min-1

i /min-1
ir /min-1

i /%

1W 60/48 1/48371 1/63 99.98 9W 60/38 1/58422 1/63 99.75

2W 60/73.3 1/78431 1/45 99.98 10W 60/74 1/78431 1/45 99.98

3W 60/52 1/78431 1/45 99.98 11W 60/36 1/58422 1/63 99.75

4W 60/38 1/78431 1/45 99.98 12W 60/48 1/60154 1/61 99.98

5W 60/36 1/58422 1/63 99.75 13W 60/73 1/78431 1/45 99.98

6W 60/73 1/78431 1/45 99.98 14W 60/53 1/57719 1/75 99.98

7W 60/66 1/78431 1/45 99.98 15W 60/65 1/78431 1/45 99.75

8W 60/62 1/78431 1/45 99.98 16W 60/70 1/57719 1/75 99.75

4. Result and Discussion

4.1. Model Validation

In this section, the accuracy of the approach proposed is 
investigated numerically. Corresponding simulation models are 
built by using Plant Simulation Version 12.0. The main 
parameters of each case are shown in Table 3. The other 
parameters are as follows:

Processing rate for each on-line workstation: 60 min-1;
Failure rate for each on-line workstation: 1/50000 min-1;
Repair rate for each on-line workstation: 1/50 min-1;
Qualified rate for each on-line workstation: 99%.

Considering the pseudo-random number which will enable 
result of the simulation less accurate, according to the GPSN 
models above, the module of the workstation in the simulation 
models is rebuilt as Fig. 5 shows.

A personal computer with Intel Core i5 CPU (2.6 GHz) and 
12 GB RAM was used to perform the numerical experiments 
for the analytical approach and simulation. Each simulation was 
run for 300 days with a warm-up period of 1000 parts time. 

In each case, we compare the analytical results with the 
simulation results. The errors in production rate are calculated 
using Eqs. (21) and listed in Table 3.

Analytical Simulation
SS

Simulation
S

100%
PR PR

error
PR

(21)

Fig. 5. Construction of workstation model in simulation

As Table 3 shows, most cases result in an error within 3%,
which demonstrates that the approach is quite effective and
efficient.

4.2. Case Study

In this section, the method proposed has been applied in a
planning scheme of a powertrain assembly line to analyze the 
system performance and to provide guidance for continuous 
improvement processes. As Fig. 6 shows, main line of the 
system consists of 16 workstations. To simplify the model view, 
the off-line buffers and pre-rework stations are not shown in Fig. 
6. The main parameters of the line are shown in Table 4. 
Otherwise, the capacity of each on-line buffer is 2. The 
production program requires the line has the production 
capability of 0.75 min-1 in the model of PUSH.

Using the decomposition algorithm above, we evaluate the 
performance of the system. Table 5 shows the processing rate

i and the steady-state availability A ( )ip of each workstation. 
Table 6 shows the average inventory ik of each buffer.
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Fig. 6. Layout of the powertrain assembly line

Table 5. The processing ratio
i

and the steady-state availability Ap i .

Workstation
i Ap i Workstation

i Ap i

1W 0.9994 0.4857 9W 0.9967 0.4857

2W 0.9996 0.7410 10W 0.9975 0.7410

3W 0.9996 0.5250 11W 0.9998 0.5250

4W 0.9996 0.6906 12W 0.9944 0.6906

5W 0.9988 0.3594 13W 0.9973 0.3594

6W 0.9996 0.7363 14W 0.9973 0.7363

7W 0.9996 0.6650 15W 0.9996 0.6650

8W 0.9996 0.6241 16W 0.9971 0.6241

Table 6. The average inventory ik of each buffer.

Buffer ik Buffer ik

1B 1.2911 9B 0.6181

2B 0.6624 10B 0.1992

3B 0.8246 11B 0.5639

4B 0.5502 12B 0.8422

5B 1.0853 13B 0.4410

6B 0.5867 14B 0.5664

7B 0.3952 15B 0.3993

8B 0.2401

Finally, the estimated qualified product production rate of the 
system is 0.5995 min-1. The result can not reach the production 
rate requirement of the production program, which is obtained 
by the empirical methods. The future work will be directed to 
the improvements of the system by optimizing the buffer 
allocation and the rework entrance allocation.

5. Conclusions

This paper proposed an approach to model and evaluate the 
performance of multistage serial manufacturing systems with 
rework loops and productive polymorphism. Not only consider 
machine failures, starvation and blockage, but also pay 
attention to process defects, multiple rework loops and product 
polymorphism. To characterize the complex state transition
resulting from the conversion of internal material flows, a 
model based on GSPN is presented. After analyzing the process 
differences resulting from rework loops and products 
polymorphism, A decomposition approach using 2M1B model 
as the building blocks is then developed. The accuracy of the 
approach is justified by numerical examples. In addition, this 
approach has been applied to a powertrain assembly line to 
evaluate the performance for the continuous improvements.
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