11 research outputs found

    Repetitive readout and real-time control of nuclear spin qubits in 171^{171}Yb atoms

    Full text link
    We demonstrate high fidelity repetitive projective measurements of nuclear spin qubits in an array of neutral ytterbium-171 (171^{171}Yb) atoms. We show that the qubit state can be measured with a fidelity of 0.995(4) under a condition that leaves it in the state corresponding to the measurement outcome with a probability of 0.993(6) for a single tweezer and 0.981(4) averaged over the array. This is accomplished by near-perfect cyclicity of one of the nuclear spin qubit states with an optically excited state under a magnetic field of B=58B=58 G, resulting in a bright/dark contrast of 105\approx10^5 during fluorescence readout. The performance improves further as 1/B2\sim1/B^2. The state-averaged readout survival of 0.98(1) is limited by off-resonant scattering to dark states and can be addressed via post-selection by measuring the atom number at the end of the circuit, or during the circuit by performing a measurement of both qubit states. We combine projective measurements with high-fidelity rotations of the nuclear spin qubit via an AC magnetic field to explore several paradigmatic scenarios, including the non-commutivity of measurements in orthogonal bases, and the quantum Zeno mechanism in which measurements "freeze" coherent evolution. Finally, we employ real-time feedforward to repetitively deterministically prepare the qubit in the +z+z or z-z direction after initializing it in an orthogonal basis and performing a projective measurement in the zz-basis. These capabilities constitute an important step towards adaptive quantum circuits with atom arrays, such as in measurement-based quantum computation, fast many-body state preparation, holographic dynamics simulations, and quantum error correction

    Progress on the Co-Pyrolysis of Coal and Biomass

    Get PDF
    In this chapter, the synergistic mechanism and the resulting influence during co-pyrolysis of coal and biomass, are summarized. The properties of coal and biomass, the release and migration of alkali and alkaline earth metals (AAEMs), the interaction between volatile and char, the characteristics of the resulting volatiles, and the physicochemical structure and reactivity of co-pyrolysis char, are also analyzed. In addition, the influence of AAEMs on the properties of the co-pyrolysis products is reviewed. Moreover, the analysis of the co-pyrolysis industry demonstration is also mentioned. Finally, this chapter also proposes some additional possibilities, based on further literature research

    Nonadiabatic Dynamics Algorithms with Only Potential Energies and Gradients: Curvature-Driven Coherent Switching with Decay of Mixing and Curvature-Driven Trajectory Surface Hopping

    No full text
    Direct dynamics by mixed quantum–classical nonadiabatic methods is an important tool for understanding processes involving multiple electronic states. Very often, the computational bottleneck of such direct simulation comes from electronic structure theory. For example, at every time step of a trajectory, nonadiabatic dynamics requires potential energy surfaces, their gradients, and the matrix elements coupling the surfaces. The need for the couplings can be alleviated by employing the time derivatives of the wave functions, which can be evaluated from overlaps of electronic wave functions at successive timesteps. However, evaluation of overlap integrals is still expensive for large systems. In addition, for electronic structure methods for which the wave functions or the coupling matrix elements are not available, nonadiabatic dynamics algorithms become inapplicable. In this work, building on recent work by Baeck and An, we propose new nonadiabatic dynamics algorithms that only require adiabatic potential energies and their gradients. The new methods are named curvature- driven coherent switching with decay of mixing (κCSDM) and curvature-driven trajectory surface hopping (κTSH). We show how powerful these new methods are in terms of computer time and good agreement with methods employing nonadiabatic coupling vectors computed in conventional ways. The lowering of the computational cost will allow longer nonadiabatic trajectories and greater ensemble averaging to be affordable, and the ability to calculate the dynamics without electronic structure coupling matrix elements extends the dynamics capability to new classes of electronic structure methods
    corecore