Repetitive readout and real-time control of nuclear spin qubits in 171^{171}Yb atoms

Abstract

We demonstrate high fidelity repetitive projective measurements of nuclear spin qubits in an array of neutral ytterbium-171 (171^{171}Yb) atoms. We show that the qubit state can be measured with a fidelity of 0.995(4) under a condition that leaves it in the state corresponding to the measurement outcome with a probability of 0.993(6) for a single tweezer and 0.981(4) averaged over the array. This is accomplished by near-perfect cyclicity of one of the nuclear spin qubit states with an optically excited state under a magnetic field of B=58B=58 G, resulting in a bright/dark contrast of ≈105\approx10^5 during fluorescence readout. The performance improves further as ∼1/B2\sim1/B^2. The state-averaged readout survival of 0.98(1) is limited by off-resonant scattering to dark states and can be addressed via post-selection by measuring the atom number at the end of the circuit, or during the circuit by performing a measurement of both qubit states. We combine projective measurements with high-fidelity rotations of the nuclear spin qubit via an AC magnetic field to explore several paradigmatic scenarios, including the non-commutivity of measurements in orthogonal bases, and the quantum Zeno mechanism in which measurements "freeze" coherent evolution. Finally, we employ real-time feedforward to repetitively deterministically prepare the qubit in the +z+z or −z-z direction after initializing it in an orthogonal basis and performing a projective measurement in the zz-basis. These capabilities constitute an important step towards adaptive quantum circuits with atom arrays, such as in measurement-based quantum computation, fast many-body state preparation, holographic dynamics simulations, and quantum error correction

    Similar works

    Full text

    thumbnail-image

    Available Versions