1,431 research outputs found

    Hyperon polarization in e^-p --> e^-HK with polarized electron beams

    Full text link
    We apply the picture proposed in a recent Letter for transverse hyperon polarization in unpolarized hadron-hadron collisions to the exclusive process e^-p --> e^-HK such as e^-p-->e^-\Lambda K^+, e^-p --> e^-\Sigma^+ K^0, or e^-p--> e^-\Sigma^0 K^+, or the similar process e^-p\to e^-n\pi^+ with longitudinally polarized electron beams. We present the predictions for the longitudinal polarizations of the hyperons or neutron in these reactions, which can be used as further tests of the picture.Comment: 15 pages, 2 figures. submitted to Phys. Rev.

    Spin alignment of vector meson in e+e- annihilation at Z0 pole

    Get PDF
    We calculate the spin density matrix of the vector meson produced in e+e- annihilation at Z^0 pole. We show that the data imply a significant polarization for the antiquark which is created in the fragmentation process of the polarized initial quark and combines with the fragmenting quark to form the vector meson. The direction of polarization is opposite to that of the fragmenting quark and the magnitude is of the order of 0.5. A qualitative explanation of this result based on the LUND string fragmentation model is given.Comment: 15 pages, 2 fgiures; submitted to Phys. Rev.

    Individual-Level Antibody Dynamics Reveal Potential Drivers of Influenza A Seasonality in Wild Pig Populations

    Get PDF
    Swine are important in the ecology of influenza A virus (IAV) globally. Understanding the ecological role of wild pigs in IAV ecology has been limited because surveillance in wild pigs is often for antibodies (serosurveillance) rather than IAVs, as in humans and domestic swine. As IAV antibodies can persist long after an infection, serosurveillance data are not necessarily indicative of current infection risk. However, antibody responses to IAV infections cause a predictable antibody response, thus time of infection can be inferred from antibody levels in serological samples, enabling identification of risk factors of infection at estimated times of infection. Recent work demonstrates that these quantitative antibody methods (QAMs) can accurately recover infection dates, even when individual-level variation in antibody curves is moderately high. Also, the methodology can be implemented in a survival analysis (SA) framework to reduce bias from opportunistic sampling. Here we integrated QAMs and SA and applied this novel QAM–SA framework to understand the dynamics of IAV infection risk in wild pigs seasonally and spatially, and identify risk factors. We used national-scale IAV serosurveillance data from 15 US states. We found that infection risk was highest during January– March (54% of 61 estimated peaks), with 24% of estimated peaks occurring from May to July, and some low-level of infection risk occurring year-round. Time-varying IAV infection risk in wild pigs was positively correlated with humidity and IAV infection trends in domestic swine and humans, and did not show wave-like spatial spread of infection among states, nor more similar levels of infection risk among states with more similar meteorological conditions. Effects of host sex on IAV infection risk in wild pigs were generally not significant. Because most of the variation in infection risk was explained by state-level factors or infection risk at long-distances, our results suggested that predicting IAV infection risk in wild pigs is complicated by local ecological factors and potentially long-distance translocation of infection. In addition to revealing factors of IAV infection risk in wild pigs, our framework is broadly applicable for quantifying risk factors of disease transmission using opportunistic serosurveillance sampling, a common methodology in wildlife disease surveillance. Future research on the factors that determine individual-level antibody kinetics will facilitate the design of serosurveillance systems that can extract more accurate estimates of time-varying disease risk from quantitative antibody data

    Two-dimensional universal conductance fluctuations and the electron-phonon interaction of topological surface states in Bi2Te2Se nanoribbons

    Full text link
    The universal conductance fluctuations (UCFs), one of the most important manifestations of mesoscopic electronic interference, have not yet been demonstrated for the two-dimensional surface state of topological insulators (TIs). Even if one delicately suppresses the bulk conductance by improving the quality of TI crystals, the fluctuation of the bulk conductance still keeps competitive and difficult to be separated from the desired UCFs of surface carriers. Here we report on the experimental evidence of the UCFs of the two-dimensional surface state in the bulk insulating Bi2Te2Se nanoribbons. The solely-B\perp-dependent UCF is achieved and its temperature dependence is investigated. The surface transport is further revealed by weak antilocalizations. Such survived UCFs of the topological surface states result from the limited dephasing length of the bulk carriers in ternary crystals. The electron-phonon interaction is addressed as a secondary source of the surface state dephasing based on the temperature-dependent scaling behavior

    Towards a global One Health index: a potential assessment tool for One Health performance

    Get PDF
    BACKGROUND: A One Health approach has been increasingly mainstreamed by the international community, as it provides for holistic thinking in recognizing the close links and inter-dependence of the health of humans, animals and the environment. However, the dearth of real-world evidence has hampered application of a One Health approach in shaping policies and practice. This study proposes the development of a potential evaluation tool for One Health performance, in order to contribute to the scientific measurement of One Health approach and the identification of gaps where One Health capacity building is most urgently needed. METHODS: We describe five steps towards a global One Health index (GOHI), including (i) framework formulation; (ii) indicator selection; (iii) database building; (iv) weight determination; and (v) GOHI scores calculation. A cell-like framework for GOHI is proposed, which comprises an external drivers index (EDI), an intrinsic drivers index (IDI) and a core drivers index (CDI). We construct the indicator scheme for GOHI based on this framework after multiple rounds of panel discussions with our expert advisory committee. A fuzzy analytical hierarchy process is adopted to determine the weights for each of the indicators. RESULTS: The weighted indicator scheme of GOHI comprises three first-level indicators, 13 second-level indicators, and 57 third-level indicators. According to the pilot analysis based on the data from more than 200 countries/territories the GOHI scores overall are far from ideal (the highest score of 65.0 out of a maximum score of 100), and we found considerable variations among different countries/territories (31.8-65.0). The results from the pilot analysis are consistent with the results from a literature review, which suggests that a GOHI as a potential tool for the assessment of One Health performance might be feasible. CONCLUSIONS: GOHI-subject to rigorous validation-would represent the world's first evaluation tool that constructs the conceptual framework from a holistic perspective of One Health. Future application of GOHI might promote a common understanding of a strong One Health approach and provide reference for promoting effective measures to strengthen One Health capacity building. With further adaptations under various scenarios, GOHI, along with its technical protocols and databases, will be updated regularly to address current technical limitations, and capture new knowledge

    Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles

    Get PDF
    We propose an optoelectronic model to investigate polymer solar cells with plasmonic nanoparticles. The optical properties of the plasmonic active layers, approximated by the effective medium theory, are combined with the organic semiconductor model. The simulation suggests the enhancement on short-circuit photocurrent is due to light concentration and redistribution by particle plasmons

    Search for Baryonic Decays of \psi(3770) and \psi(4040)

    Full text link
    By analyzing data samples of 2.9 fb^{-1} collected at \sqrt s=3.773 GeV, 482 pb^{-1} collected at \sqrt s=4.009 GeV and 67 pb^{-1} collected at \sqrt s=3.542, 3.554, 3.561, 3.600 and 3.650 GeV with the BESIII detector at the BEPCII storage ring, we search for \psi(3770) and \psi(4040) decay to baryonic final states, including \Lambda\bar\Lambda\pi^+\pi^-, \Lambda \bar\Lambda\pi^0, \Lambda\bar\Lambda\eta, \Sigma^+ \bar\Sigma^-, \Sigma^0 \bar\Sigma^0, \Xi^-\bar\Xi^+ and \Xi^0\bar\Xi^0 decays. None are observed, and upper limits are set at the 90% confidence level.Comment: 9 pages, 3 figure
    corecore