98 research outputs found
A NETWORK PATH ADVISING SERVICE
A common feature of emerging future Internet architectures is the ability for applications to select the path, or paths, their packets take between a source and destination. Unlike the current Internet architecture where routing protocols find a single (best) path between a source and destination, future Internet routing protocols will present applications with a set of paths and allow them to select the most appropriate path. Although this enables applications to be actively involved in the selection of the paths their packets travel, the huge number of potential paths and the need to know the current network conditions of each of the proposed paths will make it virtually impossible for applications to select the best set of paths, or just the best path.
To tackle this problem, we introduce a new Network Path Advising Service (NPAS) that helps future applications choose network paths. Given a set of possible paths, the NPAS service helps applications select appropriate paths based on both recent path measurements and end-to-end feedback collected from other applications. We describe the NPAS service abstraction, API calls, and a distributed architecture that achieves scalability by determining the most important things to monitor based on actual usage. By analyzing existing traffic patterns, we will demonstrate it is feasible for NPAS to monitor only a few nodes and links and yet be able to offer advice about the most important paths used by a high percentage of traffic. Finally, we describe a prototype implementation of the NPAS components as well as a simulation model used to evaluate the NPAS architecture
Exploring the mysteries of deep oil and gas formation in the South China Sea to guide Palaeocene exploration in the Pearl River Mouth Basin
Deep oil and gas resources in the South China Sea have drawn increasing attention in recent years, involving several essential challenges such as favorable zone prediction, deep burial, poor data quality, non-homogeneous reservoir properties, low drilling rate, and the low research degree of Paleozoic strata. These issues vastly affect the exploration and development of deep oil and gas resources in this area. Specifically, the Lufeng and Huizhou Depressions exhibit rich hydrocarbon accumulation and distribution areas in the Pearl River Mouth Basin, thereby possess great resource potential. The seven papers discussed here propose a set of practical techniques that can be applied to the exploration of deep Paleogene in the shallow layers of the Pearl River Mouth Basin. All of these works make important contributions deepening the theory of Paleogene reservoir formation and promoting further exploration of Paleogene in the Pearl River Mouth Basin, to increase the hydrocarbon storage and production prospects.Cited as: Pang, X., Li, H., Pang, H. Exploring the mysteries of deep oil and gas formation in the South China Sea to guide Palaeocene exploration in the Pearl River Mouth Basin. Advances in Geo-Energy Research, 2022, 6(5): 361-362. https://doi.org/10.46690/ager.2022.05.0
Whole petroleum system theory and new directions for petroleum geology development
As the global petroleum exploration domain gradually shifts from conventional to unconventional hydrocarbon resources, the classical petroleum system theory faces new challenges in terms of guiding the deepening exploration practices in the petroleum industry. After years of research, Chengzao Jia proposed the whole petroleum system concept and established an orderly distribution model for the coexistence of conventional and unconventional petroleum, which provides a new theoretical framework for the joint assessment and integrated exploration of conventional and unconventional petroleum resources. In this context, the 1st International Symposium on Whole Petroleum System Theory and New Directions for Petroleum Geology Development was held in Beijing in October 2-3, 2023. The theme was “Whole petroleum system theory and new frontiers in petroleum exploration”. Experts engaged in in-depth discussions on the progress of whole petroleum system theory and development directions of petroleum geology; they systematically reviewed the new theory developments and advances in sequence stratigraphy, tight oil and gas, shale oil and gas reservoir characteristics, genetic mechanisms, and development mechanisms. The conference also proposed unified genetic models for conventional and unconventional petroleum resources, and novel methods and technologies for joint assessment. Furthermore, it also included case studies on the whole petroleum system in clastic and carbonate formations in oil and gas basins, challenges, opportunities, and new directions in the development of petroleum geology. This symposium provided a valuable opportunity for the petroleum geology community to gain a deep understanding of the “whole petroleum system theory” and to summarize and refine the development directions of petroleum geology. Undoubtedly, this event contributes to the advancement of the whole petroleum system theory, guiding the development of petroleum geology theory and further promoting the joint assessment and integrated future development and utilization of conventional and unconventional petroleum resources.Document Type: PerspectiveCited as: Hu, T., Pang, X., Jiang, F. Whole petroleum system theory and new directions for petroleum geology development. Advances in Geo-Energy Research, 2024, 11(1): 1-5. https://doi.org/10.46690/ager.2024.01.0
Hydrocarbon accumulation model based on threshold combination control and favorable zone prediction for the lower Enping Formation, Southern Lufeng sag
Deep complex oil and gas reservoirs are the future directions of oil and gas exploration. The exploration potential of Paleocene deposits in the Lufeng sag is enormous. However, due to the greater burial depth and complex oil and gas accumulation conditions of the Paleocene, few large-scale reservoirs have been discovered and the next exploration strategy is unclear. In this study, based on the Paleocene geological data of the Southern Lufeng sag, a model of hydrocarbon accumulation based on functional element control is constructed using geostatistical and numerical simulation techniques. The hydrocarbon accumulation elements, thresholds, boundaries and scopes are clarified, and the favorable zones of hydrocarbon accumulation of the lower Enping Formation are predicted using the model of hydrocarbon accumulation based on threshold combination control. The results indicate that the source rock, reservoir, caprock, and low-potential area are the four functional elements controlling hydrocarbon accumulation. Since there are three types of low-potential zones, a total of six accumulation elements are considered to control hydrocarbon accumulation, and the corresponding hydrocarbon accumulation control thresholds are determined by the model of hydrocarbon accumulation according to the controlling effects of these accumulation elements. The predicted Type I favorable zones are located in the eastern part of Lufeng 13 east sub-sag and the northern and southern parts of Lufeng 7 sub-sag; Type II favorable zones are located in the western part and around the Lufeng 13 east sub-sag; Type III favorable zones are adjacent to Type II favorable zones. The hydrocarbon shows are all located in the overlapping zone of five or more accumulation elements.Cited as: Zhang, L., Pang, X., Pang, H., Huo, X., Ma, K., Huang, S. Hydrocarbon accumulation model based on threshold combination control and favorable zone prediction for the lower Enping Formation, Southern Lufeng sag. Advances in Geo-Energy Research, 2022, 6(5): 438-450. https://doi.org/10.46690/ager.2022.05.0
Depositional model for mixed carbonate-clastic sediments in the Middle Cambrian Lower Zhangxia Formation, Xiaweidian, North China
In order to make accurate decisions in interpreting depositional environments of sedimentary rocks, a multi-proxy approach is best employed. In the Middle Cambrian Lower Zhangxia Formation exposed at Xiaweidian in the Northern China, lack of this form of approach puts doubts on the various models (e.g. carbonate ramp and isolated platform) proposed by previous workers. In this study, we integrated field outcrop investigation with laboratory examinations of thin sections with light and electron microscopies to further understand sedimentary environments of the Lower Zhangxia Formation. Dominant rock types of this formation include oolitic limestone, muddy limestone, flat-pebble limestone and calcareous mudstone. Evidence from ooid features and lime-mud content of oolitic limestones suggests their deposition in an environment with intermittent high energy level. The muddy limestones were formed on a restricted platform with lower wave energy, which is supported by the existence of pyrites in a reducing environment and the input of terrestrial clays from neighboring clastic environments. The flat-pebble limestones were formed by storm reworking of early deposits on restricted platform below a fair-weather wave base, due to their composition and clast features. Mudstones with occurrences of terrestrial silts could be associated with clastic shallow marine adjacent to the restricted platform. A mixed carbonate-clastic depositional model is suggested for this formation and can be used as model for other researchers working in the North China.Cited as: Zhang, X., Pang, X., Jin, Z., Hu, T., Toyin, A., Wang, K. Depositional model for mixed carbonate-clastic sediments in the Middle Cambrian Lower Zhangxia Formation, Xiaweidian, North China. Advances in Geo-Energy Research, 2020, 4(1): 29-42, doi: 10.26804/ager.2020.01.0
Potential resources of conventional, tight, and shale oil and gas from Paleogene Wenchang Formation source rocks in the Huizhou Depression
Conventional and tight unconventional oil and gas resources in the Huizhou Depression have shown broad exploration prospects, which mainly originate from Wenchang Formation source rocks. Thus far, studies on Wenchang Formation source rocks mainly focused on the geochemical characteristics and conventional petroleum resource evaluation; however, the correlation of conventional, tight, and shale oil and gas, and their resources are still unknown. In fact, the formation of conventional, tight, and shale oil and gas are intrinsically related, which allows for a more objective evaluation to consider the three types of oil and gas resources simultaneously in the whole dynamic process of both hydrocarbon generation and expulsion, as well as reservoir tightness history. In this work, based on geological and geochemical analyses, the improved hydrocarbon generation potential method was utilized to establish a hydrocarbon generation and expulsion model of the Wenchang Formation source rocks. Then, combined with the reservoir tightness history, the conventional, tight, and shale oil and gas resources were evaluated. The results show that the Wenchang Formation source rocks are distributed in the whole depressions, with a thickness of 50-1850 m and an average total organic carbon content of 2.2%. The organic matter is mainly type II and is mature-high maturity. The Wenchang Formation source rocks reached hydrocarbon generation threshold and expulsion threshold at a vitrinite reflectivity of 0.43% and 0.65%, respectively, and the reservoir evolved completely tight at 2.3 Ma. Overall, the Lower and Upper Wenchang Formation contain a large amount of conventional, tight, and shale oil and gas resources.Cited as: Hu, T., Wu, G., Xu, Z., Pang, X., Liu, Y., Yu, S. Potential resources of conventional, tight, and shale oil and gas from Paleogene Wenchang Formation source rocks in the Huizhou Depression. Advances in Geo-Energy Research, 2022, 6(5): 402-414. https://doi.org/10.46690/ager.2022.05.0
Mechanical modeling of incompressible particle-reinforced neo-Hookean composites based on numerical homogenization
In this paper, the mechanical response of incompressible particle-reinforced neo-Hookean composites (IPRNC) under general finite deformations is investigated numerically. Threedimensional Representative Volume Element (RVE) models containing 27 non-overlapping identical randomly distributed spheres are created to represent neo-Hookean composites consisting of incompressible neo-Hookean elastomeric spheres embedded within another incompressible neo-Hookean elastomeric matrix. Four types of finite deformation (i.e., uniaxial tension, uniaxial compression, simple shear and general biaxial deformation) are simulated using the finite element method (FEM) and the RVE models with periodic boundary condition (PBC) enforced. The simulation results show that the overall mechanical response of the IPRNC can be well-predicted by another simple incompressible neo-Hookean model up to the deformation the FEM simulation can reach. It is also shown that the effective shear modulus of the IPRNC can be well-predicted as a function of both particle volume fraction and particle/matrix stiffness ratio, using the classical linear elastic estimation within the limit of current FEM software
A Phenomenological Thermal-Mechanical Viscoelastic Constitutive Modeling for Polypropylene Wood Composites
This paper presents a phenomenological thermal-mechanical viscoelastic constitutive modeling for polypropylene wood composites. Polypropylene (PP) wood composite specimens are compressed at strain rates from 10−4 to 10−2 s−1 and at temperature of , , and , respectively. The mechanical responses are shown to be sensitive both to strain rate and to temperature. Based on the Maxwell viscoelastic model, a nonlinear thermal-mechanical viscoelastic constitutive model is developed for the PP wood composite by decoupling the effect of temperature with that of the strain rate. Corresponding viscoelastic parameters are obtained through curve fitting with experimental data. Then the model is used to simulate thermal compression of the PP wood composite. The predicted theoretical results coincide quite well with experimental data. The proposed constitutive model is then applied to the thermoforming simulation of an automobile interior part with the PP wood composites
Preface: The Second Generation of Second Amendment Law & Policy
Over 70% of China’s domestic oil production is obtained from nine giant oilfields. Understanding the behaviour of these fields is essential to both domestic oil production and future Chinese oil imports. This study utilizes decline curves and depletion rate analysis to create some future production outlooks for the Chinese giants. Based on our study, we can only conclude that China’s future domestic oil production faces a significant challenge caused by maturing and declining giant fields. Evidence also indicates that the extensive use of water flooding and enhanced oil recovery methods may be masking increasing scarcity and may result in even steeper future decline rates than the ones currently being seen. Our results suggest that a considerable drop in oil production from the Chinese giants can be expected over the next decades
- …