
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2015

A NETWORK PATH ADVISING SERVICE A NETWORK PATH ADVISING SERVICE

Xiongqi Wu
University of Kentucky, snowcc@gmail.com

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Wu, Xiongqi, "A NETWORK PATH ADVISING SERVICE" (2015). Theses and Dissertations--Computer
Science. 32.
https://uknowledge.uky.edu/cs_etds/32

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It has
been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232565813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Xiongqi Wu, Student

Dr. James Griffioen, Major Professor

Dr. Miroslaw Truszczynski, Director of Graduate Studies

A NETWORK PATH ADVISING SERVICE

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Engineering
at the University of Kentucky

By
Xiongqi Wu

Lexington, Kentucky

Director: Dr. James Griffioen, Professor of Computer Science

Lexington, Kentucky

2015

Copyright c© Xiongqi Wu 2015

ABSTRACT OF DISSERTATION

A NETWORK PATH ADVISING SERVICE

A common feature of emerging future Internet architectures is the ability for
applications to select the path, or paths, their packets take between a source and
destination. Unlike the current Internet architecture where routing protocols find a
single (best) path between a source and destination, future Internet routing protocols
will present applications with a set of paths and allow them to select the most
appropriate path. Although this enables applications to be actively involved in the
selection of the paths their packets travel, the huge number of potential paths and
the need to know the current network conditions of each of the proposed paths will
make it virtually impossible for applications to select the best set of paths, or just
the best path.

To tackle this problem, we introduce a new Network Path Advising Service (NPAS)
that helps future applications choose network paths. Given a set of possible paths,
the NPAS service helps applications select appropriate paths based on both recent
path measurements and end-to-end feedback collected from other applications. We
describe the NPAS service abstraction, API calls, and a distributed architecture that
achieves scalability by determining the most important things to monitor based on
actual usage. By analyzing existing traffic patterns, we will demonstrate it is feasible
for NPAS to monitor only a few nodes and links and yet be able to offer advice about
the most important paths used by a high percentage of traffic. Finally, we describe
a prototype implementation of the NPAS components as well as a simulation model
used to evaluate the NPAS architecture.

KEYWORDS: Future Internet, Path Selection, Scalable Monitoring

Xiongqi Wu

March 26, 2015

A NETWORK PATH ADVISING SERVICE

By

Xiongqi Wu

Dr. James Griffioen

Director of Dissertation

Dr. Miroslaw Truszczynski

Director of Graduate Studies

March 26, 2015

ACKNOWLEDGMENTS

I would like to express the deepest appreciation to my advisor Dr. James Griffioen,

who has been a great mentor for me. I would like to thank him for encouraging my

research and for helping me becoming a better computer scientist. His knowledge

and enthusiasm in computer networks guided me towards the correct path for my

Ph.D study. His advice on how to tackle a problem has been priceless. I appreciate

him for sending me to conference where I met a lot of people and learned different

ideas. Without his supervision and constant help this dissertation would not have

been possible.

I would like to thank Dr. Zongming Fei, Dr. Miroslaw Truszczynski, and Dr.

James Lumpp for being my committee members and for their help in my Ph.D study.

I would also like to thank Dr. Aaron Cramer for being my outside examiner.

In addition, I would like to thank Hussamuddin Nasir, Lowell Pike, William Marvel

for their assistance in maintaining lab machines, setting up testbeds, and fixing some

technical problems for my projects.

I want to give a special thanks to my parents. Their endless love and support for

me was what sustained me thus far. Their encouragement gave me a great confidence

to pursue my doctoral study in Computer Science.

iii

Table of Contents

Acknowledgments iii

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Desired features of NPAS . 3

1.1.1 Rating Paths . 3
1.1.2 Monitoring the Internet . 5
1.1.3 Collecting End User Feedback 6

1.2 Contributions of the Thesis . 7
1.3 Thesis Organization . 8

2 Related Work 10
2.1 Active and Passive Approaches . 11
2.2 Network Measurements . 13

2.2.1 Measuring Network Latency 13
2.2.2 Active Bandwidth Measurement 14
2.2.3 Passive Bandwidth Measurement 16
2.2.4 Application-specific Network Metrics 17
2.2.5 Packet-Level Traffic Measurement 18

2.3 Monitoring Various Types of Networks 19
2.3.1 DNS based Measurement Infrastructure 19
2.3.2 Overlay Networks . 20
2.3.3 Virtual Networks . 21

2.4 Measuring the End-to-End Path . 23
2.5 QOS Routing . 24

3 Future Network Environments 26
3.1 Support for Monitoring in the Future 26
3.2 Network Topology and Paths . 28

3.2.1 The NPAS’s View of Topology 31
3.3 The Role of Routing in the Future 33

3.3.1 Finding a Set of Possible Paths 34
3.3.2 Specifying Path Queries . 35

iv

4 A Network Path Advising Service 37
4.1 Using NPAS . 37
4.2 NPAS Features . 39
4.3 The NPAS System Architecture . 40

5 The NPAS Service Abstraction 46
5.1 The Rating API . 47
5.2 The Scheduling API . 53
5.3 The Feedback API . 54

6 Covering Paths 57
6.1 Coverage Metrics . 58
6.2 What Paths Will Applications Request? 59
6.3 How Many Links Should NPAS Monitor? 61

6.3.1 Single-Source Monitoring . 61
6.3.2 Identifying Popular Links for Multiple Sources 62
6.3.3 Global (Shared) Monitoring 64
6.3.4 Local (Private) Monitoring . 66
6.3.5 Multi-source Multi-route Monitoring 67
6.3.6 Future Traffic Monitoring . 69
6.3.7 Monitoring for International ASes 70
6.3.8 Monitoring for Multiple Traffic Patterns 73

6.4 Selecting Monitoring Points . 76
6.4.1 One AS per Link Monitoring 77
6.4.2 Two ASes per Link Monitoring 79
6.4.3 Monitoring Point Selection for Multi-route Monitoring 81
6.4.4 Monitoring Point Selection for International ASes 81

6.5 Network Overhead of Covering Popular Paths 83

7 Collecting Path Information 88
7.1 Changing the Monitoring Points . 88
7.2 Gathering and Distributing Dynamic Path Measurements 91
7.3 Getting Path Measurements From Feedback 91

7.3.1 Handling Feedback . 92

8 Rating Paths 94
8.1 Storing Path Information . 94

8.1.1 Caching the Link/Path information 95
8.1.2 Privacy Issues . 96

8.2 Making Path Recommendations . 96
8.3 Handling Competing Requests . 97
8.4 Path Advising Examples . 98

9 Simulation 101
9.1 Designing the Simulation System . 101

9.1.1 Simulating Network Traffic . 101
9.1.2 Simulating the Applications’ Requests 102

v

9.1.3 Simulating NPAS . 102
9.2 Simulation Results . 103

9.2.1 Throughput Improvement . 103
9.2.2 Latency Improvement . 106
9.2.3 Flow Coverage and Correctness 108
9.2.4 NPAS Stability . 110
9.2.5 Reduced Network Overhead with Local Request Servers 111
9.2.6 Benefits of Using Feedback . 112

10 Conclusions 115
10.1 Future Work . 116

Bibliography 120

Vita 127

vi

List of Tables

6.1 Traffic to Streaming and Social Media Services 74
6.2 The Top 5000 Link Coverage from Monitoring ASes (One AS per Link) 78
6.3 The Link/Path Hit Ratio for Monitoring 50 ASes (One AS per Link) 78
6.4 The Link/Path Hit Ratio for Monitoring 100 ASes (One AS per Link) 78
6.5 The Link/Path Hit Ratio for Monitoring 300 ASes (Monitoring Both

Endpoints) . 80
6.6 The Link/Path Hit Ratio for Monitoring 600 ASes (Monitoring Both

Endpoints) . 80
6.7 The Link/Path Hit Ratio for Monitoring 100 ASes with Multiple Paths

(Monitoring One Endpoint) . 81
6.8 The Link/Path Hit Ratio for Monitoring 600 ASes with Multiple Paths

(Monitoring Both Endpoints) . 82
6.9 The Link/Path Hit Ratio for Monitoring 100 ASes with Multiple Paths

(Monitoring One Endpoint) . 82
6.10 The Link/Path Hit Ratio for Monitoring 600 ASes with Multiple Paths

(Monitoring Both Endpoints) . 82
6.11 The Link Measurement Request and Distribution Rate for the Top

5000 Links . 84

vii

List of Figures

3.1 A Network Topology . 28
3.2 A Network Topology With Virtual Links 29
3.3 Link Characteristics . 30
3.4 Network Measurement Points . 30
3.5 A Simple Network Topology With Monitoring Points 33

4.1 NPAS Use Cases . 38
4.2 The NPAS System Architecture . 41
4.3 NPAS Components . 44

5.1 Using the Rating API (for Senders) 49
5.2 Using the Rating API (for Receivers) 51
5.3 Using the Feedback API . 55

6.1 The Percentage of Flows that are Covered by Top Destination ASes . 60
6.2 The Link Hit Ratio vs the Number of Links Monitored for UKY . . . 62
6.3 The Link Hit Ratio by Monitoring Top Globally Shared Links 65
6.4 The Path Hit Ratio by Monitoring Top Globally Shared Links 65
6.5 The Link Hit Ratio with Local Monitor 67
6.6 The Path Hit Ratio with Local Monitor 67
6.7 The Link Hit Ratio with Local Monitor and Multiple Paths 68
6.8 The 2-Path Hit Ratio with Local Monitor and Multiple Paths 68
6.9 The 3-Path Hit Ratio with Local Monitor and Multiple Paths 69
6.10 The Link Hit Ratio for Future Traffic with Local Monitor 70
6.11 The Link Hit Ratio with Local Monitor for International ASes 71
6.12 The Path Hit Ratio with Local Monitor for International ASes 71
6.13 The Average AS Link/Path Hit Statistics with Local Monitor 72
6.14 The Link Hit Ratio with Local Monitor and Multiple Paths for

International ASes . 72
6.15 The 2-Path Hit Ratio with Local Monitor and Multiple Paths for

International ASes . 73
6.16 The AS Link/Path Hit Statistics with Local Monitor and Multiple

Traffic Patterns . 75
6.17 The Top 500 ASes Coverage Statistics 75

8.1 The NPAS System Data Flow . 95

9.1 Average Throughput Per Flow for Traffic from UKY 104

viii

9.2 Average Throughput Per Flow for Traffic from Purdue 104
9.3 Average Throughput Per Flow for Traffic from FSU 105
9.4 Latency Improvement Statistics for UKY 106
9.5 Latency Improvement Statistics for Columbia 106
9.6 Latency Improvement Statistics for FSU 107
9.7 200 Minutes Flow Hit Statistics for UKY 108
9.8 200 Minutes Flow Hit Statistics for UCB 109
9.9 200 Minutes Flow Hit Statistics for Purdue 109
9.10 200 Minutes Flow Hit Statistics for FSU 109
9.11 Stability Test for a Set of Paths Originating from UKY 110
9.12 Cache Hit Statistics for UKY . 112
9.13 3-Path Hit Ratio With Feedback for US ASes 113
9.14 3-Path Hit Ratio With Feedback for International ASes 113

ix

Chapter 1

Introduction

In today’s Internet, communication between two end hosts occurs over a path selected

by the Internet’s routing protocols. Network routing in the Internet is (for the

most part) based on distributed algorithms in which routers collectively identify

the best path for packets to travel between a source and destination. For example,

routing tables are maintained by various routing protocols, such as BGP or OSPF.

The Border Gateway Protocol (BGP) [1] exchanges routing information between

autonomous systems (ASes), and makes routing decision based on connectivity,

network policies, and rules enforced by network administrators. On the other hand,

the Open Shortest Path First (OSPF) [2] routing protocol typically operates within

a single AS, providing interior routes for an AS. OSPF picks the shortest path as the

routing path. Neither BGP nor OSPF offers applications control over the routing

paths. In other words, applications have little choice but to use the single path

selected by the routing service, regardless of whether the selected path meets the

needs of the application.

There are a variety of reasons why applications want to control the paths their

packets take. These reasons are often based on performance requirements such as

bandwidth, loss rate, latency, or reliability, but are requirements that will vary from

application to application. For example, a video server streaming high definition

video may choose to take the route that has high bandwidth and low jitter, while a

1

game application might want a low delay path.

To address this problem, many emerging network architectures include the ability

for applications to select the path (or set of paths) they want to use from a list of

potential network paths. For example, overlay networks often give applications the

ability to choose among a set of routes for a given source and destination pair. In a

programmable virtual network, such as GENI [3], the network can be programmed to

route different types of traffic along different paths. Future Internet architectures,

such as NEBULA [4], also offer multiple choices of routing paths. In addition,

the source routing approaches, such as ICING [5], XIA [6], and POMO [7], enable

applications to specify their own routing paths. Even the IPv4 and IPv6 protocols

have defined a way to support loose source routing although it is often disabled.

Therefore, we envision that in future networks, applications will have more control

over the paths their packets traverse across the network. For example, Internet service

providers (ISPs) can deploy software defined networks (SDNs) [8] to give applications

control over the routing paths. While these approaches hold great potential, they

require that new types of routing services and protocols be developed that can identify

and return a list of paths to applications – a list from which the application will then

choose.

Since future routing protocols are likely to provide applications with multiple

choices of routes, helping applications choose suitable routing paths has become

an important problem. If an application must pick its own routing paths, it will

need dynamic, up to date information to help it decide what routing paths it should

take and how to make the most effective use of those paths. Even if only a small

number of paths are provided by the future routing service between a source and

destination, there could be a huge number of paths network-wide. Monitoring all

paths applications could possibly choose will not scale. In addition, some links on

these paths cannot be monitored because ISPs may not allow monitoring on certain

2

links.

To choose routing paths that offer the best or most appropriate service for an

application, this thesis proposes a new Network Path Advising Service (NPAS).

Note that NPAS is neither a routing service (which finds connectivity) nor a

traditional monitoring service (that captures detailed measurements of node and

link performance). Instead, the goal of the NPAS service is to take paths found

by a routing service as well as measurement information captured by NPAS to

develop estimates of end-to-end path performance and then make recommendations

about which paths to use and how to use them based on the application’s unique

requirements.

1.1 Desired features of NPAS

To help applications determine suitable paths, NPAS must rate routing paths based

on the application’s requirements. Providing accurate path ratings requires NPAS to

collect dynamic (i.e., rapidly changing) information about the links and routers that

comprise a path such as the available bandwidth, queuing delays, jitter, loss rates,

etc. There are two ways that NPAS can obtain dynamic path information:

1. Collect information from the network (i.e., monitor the Internet)

2. Collect information from users (e.g., ask applications running on end systems

to report feedback about their experience).

1.1.1 Rating Paths

Future routing services will need to find and make available a set of paths that could

be used by the application. Given the fact that current routing protocols already

face scalability challenges finding a single path, one can be assured that finding a

set of paths will present even greater scalability challenges. Given a massive number

of possible paths between a source and destination, simply finding some subset of

3

those paths will require significant computation. Note that finding connectivity is

application independent and applications with different requirements could receive a

similar set of routing paths. Even if the routing service could find all possible paths, it

will not be capable of rating them because the “performance” of the path is constantly

changing and it is infeasible for the routing service to monitor the performance of all

the paths given the measurement and processing overhead needed to do so. For

example, in the current Internet, there are tens of thousands of ASes. Even if a

single path is used for applications between each pair of ASes, it will introduce an

unacceptable amount of overhead to monitor thousands of millions of paths.

To help applications select the best path for their needs, the NPAS system must

rate/rank paths based on the application’s needs. Rating the paths found by the

routing service is a hard problem because:

• The ranking depends on the application’s requirements for the path. The

ranking can only be done when NPAS knows which application needs a path

(and the characteristics of the path that is needed).

• The characteristics of the path are constantly changing and must be contin-

uously collected to make informed decisions. Since fast collection of path

information consumes more network resources than infrequent collection of path

information, NPAS must carefully decide what links/nodes it should monitor

in order to scale.

• The path information needs to be distributed to “local NPAS decision making

processes” because sending all path ranking requests from all clients in the

Internet to a central server will not scale (note that path ranking requests occur

more frequently than, say, Google search requests). In addition, information

needs to be distributed at a rate based on the request patterns to help reduce

the traffic overhead.

4

• NPAS must deal with partial path information. NPAS may have some

information along a path, but not information for all links. Partial information

could be beneficial even though it is incomplete, providing information needed

to select a path that may potentially meet the application’s need.

• Even if NPAS has all the latest up-to-date information, computing the “best

path(s)” can be computationally hard. In this thesis, we do not address

this issue but the work in [9] helps solve this problem. Instead, we focus on

evaluating paths that are requested by applications.

1.1.2 Monitoring the Internet

To collect dynamic path information that will be used to rate paths for applications,

NPAS must monitor the Internet. To accurately rate paths while at the same time

keep the measurement overhead at an acceptable level, NPAS not only needs to keep

track of dynamically changed path condition, but also needs to decide monitoring

points based on the application’s requests.

Current measurement systems are often designed to measure a local network or

a small scale network. Because the network being monitored is small, the system

is able to monitor the entire network. NPAS, on the other hand, needs to provide

information about end-to-end paths that span multiple ISPs. In other words, the

measurement/monitoring system needs to scale to the size of the Internet.

In addition, traditional monitoring systems are often designed to be used by

network administrators, not by applications. Network administrators usually have

different interests in network metrics than applications. For example, in case of a

link failure, network administrators may want to obtain network information that

can help find the reason for the link failure, while applications don’t care why the

link failed, but rather only care about finding alternative paths that they can use to

5

send packets. Consequently, NPAS should look for dynamic end-to-end path metrics

(e.g, bandwidth, latency) that applications are most interested in.

Unlike (local) monitoring systems deployed by ISPs, NPAS is designed to provide

advice about end-to-end paths across the Internet. To achieve the desired scalability

and timely collection/reporting of network measurements, NPAS leverages emerging

programmable networks to dynamically adjust what it monitors based on current

application patterns. While programmable networks enable NPAS to dynamically

instrument the network with the measurement points needed by the current set of

applications, NPAS must still reason out what path information needs to be collected

and what nodes should be monitored while taking into account the network overhead,

measurement overhead, and the ability/limitations of turning monitors on and off at

network nodes. This reasoning ability enables NPAS to collect only path information

that might be of interest to applications thereby reducing measurement overhead.

Since NPAS cannot monitor every path, NPAS will not have path information

for some paths. In cases where NPAS does not have the complete path information

for the requested path, NPAS should still evaluate the path based on partial path

information (e.g., sub path information).

1.1.3 Collecting End User Feedback

In addition to collecting path measurements from ISPs, NPAS also collects feedback

information from applications and uses feedback to evaluate network paths for future

path queries. Feedback can provide path information about certain paths that could

not be monitored otherwise. In addition, feedback can contain the application’s choice

of route. The application’s choice of route can be used as the recommended route for

other applications. For example, if a path is picked by some video applications, the

same path could be recommended to another video application even if NPAS does

not has path measurement information to evaluate the path. The application’s choice

6

of route can also be used as an indication of whether applications are satisfied with

NPAS’s advice.

1.2 Contributions of the Thesis

The contributions of this thesis include:

• Envisioning routing in the future Internet: Routing services will exist in the

future Internet. They will find connectivity between a source and destination,

and will provide applications with a set of paths from which applications can

choose. However, the routing services will not rank paths. The routes provided

by routing services will contain a series of link (or node) identifiers which will

help NPAS identify the monitor points.

• Designing a distributed NPAS architecture: Providing applications with path

advice requires us to build a distributed NPAS system to collect and distribute

path/link measurements, and to deliver path advice to applications. We

introduce shared (global) NPAS servers and local NPAS servers to deliver up-

to-date path information to applications and to share path/link information

among ASes.

• Designing the NPAS APIs: In order for applications to use NPAS, NPAS should

provide a set of APIs that rate paths, schedule traffic over multiple paths, and

collect feedback. It is challenging to design the NPAS APIs so that the APIs

can be used in different scenarios. We need to envision how applications will

make use of NPAS in the future network. In addition, a well designed API can

help NPAS collect path request information (which can help NPAS decide what

path information should be collected) and feedback from applications.

• Monitoring the future Internet for applications in a scalable way: NPAS is

designed to provide information about Internet-scale networks, not individual

7

ISPs or ASes. It is infeasible to monitor all paths. Therefore, NPAS needs to

decide how many monitoring points are needed and where to place monitors.

Since paths can span multiple ISPs (or ASes) and getting path information from

ASes may be expensive, NPAS must keep the number of ASes (nodes) that it

needs to interact with as small as possible. On the other hand, determining

the monitoring frequency and how often the path/link measurements need to

be distributed are also important to help NPAS scale.

• Testing and evaluating NPAS: We use real-world traffic traces to identify the

number of measurement points needed by NPAS to efficiently and effectively

monitor the Internet. Our analysis shows that current Internet traffic is highly

concentrated on a small set of paths involving a relatively small number of links

(popular links). As one might expect, the Internet traffic is largely destined

for a handful of the major content providers (e.g., Google, Facebook, etc). In

light of this fact, by strategically placing monitors in as few as 100 ASes to

monitor 5000 shared links and a few local links per AS, NPAS is able to provide

path/link information for about 70% to 90% of traffic. To further test the

NPAS system, we used a simulated network with dynamic path conditions.

The experimental results show that applications can greatly improve their

performance (e.g, increase throughput) by taking NPAS-recommended paths.

1.3 Thesis Organization

We begin by describing existing network measurement techniques and traditional

network measurement infrastructures for various types of networks in Chapter 2.

Chapter 3 addresses the characteristics of the future network where NPAS will be

deployed. Chapter 4 presents the architecture of NPAS, followed by the description

of the NPAS service abstraction in Chapter 5. In Chapter 6, we study the existing

traffic patterns and propose algorithms to identify monitoring points. Chapter 7 and

8

Chapter 8 discuss how to collect path information and rate paths for applications. In

Chapter 9, we present a simulation model and the NPAS simulation results. Finally,

we present our concluding thoughts in Chapter 10.

9

Chapter 2

Related Work

Historically there has been little need to provide network applications and services

with information about the network’s performance, because the network (or the

network operator) makes the routing decisions, not the application. Consequently,

traditional network monitoring systems [10] are largely designed to provide in-

formation for network administrators. There are a variety of existing network

measurement infrastructure services [11, 12] that use active measurement tools (e.g.,

ping, traceroute, pathchar [13], pathload [14], pathrate [15], and iperf) and passive

measurement tools (e.g., NetFlow collectors [16], nettime [17], and spand [18])

to collect network measurements. Although applications might be able to obtain

path information from such tools, these tools are usually designed to help network

administrators debug problems, optimize network performance, re-architect the

network topology, or to generally keep the network running. As a result, many of the

existing tools are designed to look for faults and signal alerts, or to look for anomalous

behavior in the network that might indicate a potential failure or a security breach.

Unlike traditional monitoring systems, NPAS’s primary goal is to assist network

applications and services by gathering the information they need, which often differs

from the information a network administrator needs. In particular, NPAS focuses on

various end-to-end network metrics associated with paths (as opposed to traditional

monitoring which is focused on the links and nodes managed by an ISP). Example

10

end-to-end path metrics include the available bandwidth of a path, the latency of a

path, the loss rate of a path, or the variability and reliability of a path – information

that must be collected across ISPs.

Tomography-based models, such as [19] and [20], can be used to calculate

path/link information. However, tomography-based models fail to provide accurate

and up-to-date path information (e.g., the current available bandwidth of a path).

QoS routing [21, 22, 23, 24] has also been studied as a way for applications to

find paths that meet applications’ needs. However, QoS routing has its limitations.

For example, QoS routing needs to reserve network resources. There is also some

research [25, 26, 27] on finding paths for applications in overlay networks. However,

these approaches do not address the issue of measuring performance of the paths in

a scalable way.

2.1 Active and Passive Approaches

Network measurements that require injecting extra packets into the network are

identified as Active Network Measurement approaches. Ping and traceroute are

two examples of well-known active measurement tools. Performing active network

measurement can interfere with normal network traffic. For example, when iperf is

used to test TCP throughput between two end hosts, other TCP traffic sharing the

same path may experience packet loss thereby reducing the sending rate. Therefore,

reducing the measurement-related overhead is very important for systems that use

active network measurement. Using fewer samples or using estimation and reasoning

techniques to calculate the needed network characteristics can reduce the overhead,

but may affect the measurement accuracy. Despite its limitations, the active

measurement technique could be used (in a balanced way) by NPAS to collect network

measurements between monitoring points, especially when these monitoring points

are not directly connected to each other.

11

In contrast to active network measurements, passive network measurement does

not inject extra packets into the network. Instead, passive network measurement

tools often listen on network devices (e.g., routers), capture packets coming through

the devices, and analyze the captured packets to obtain network information. For

example, SNMP [28] data and netflow [29] data are usually collected passively. Passive

measurement tools are good for measuring traffic statistics of a network device, such as

the sending/receiving rate, types of traffic sent/received, etc.. The main advantage of

passive network measurement is that it has very little affect on the network. However,

it introduces overhead on the host system where the passive measurement tool is

running, because various resources, such as CPU, memory and storage, are needed

for capturing packets, processing packets, analyzing packets, and storing the final

results. Since passive network measurement does not introduce measurement traffic

to the network, making use of passive measurement techniques help NPAS learn about

current network performance without imposing additional network overhead.

A challenge in passive measurement is the huge amounts of data that pass through

certain nodes. Traditionally, collected data is stored in large databases and post

processed to get traffic measurements. To do real time measurement, a measurement

node should have enough processing power to generate measurement results on

demand. Typically, users only request a few network measurements (e.g., statistics

for heavy TCP flows). To efficiently get the requested measurements, filters can be

used to extract the desired data. The distributed online measurement environment

(DOME) proposed in [30] is an example of passive measurement system that is capable

of handling measurement data in real time. Since DOME installs filters and collects

statistics on measurement nodes according to users’ queries, DOME is able to provide

answers to queries in real time. The accuracy of DOME on certain queries depends

on the amount of memory provided for those queries. In general, passive network

measurement systems should focus on processing the observed traffic to get the desired

12

measurements while considering the resource consumption on the host system at the

same time. Similarly, in NPAS, the processing overhead of the passively collected

data can be reduced in two different ways. First, passive collection occurs only on

nodes that carry measurements which are of interests to applications. Second, low

processing frequencies are used for measurements that are infrequently requested.

2.2 Network Measurements

There are various path metrics that may be of interest to the application, such as

latency, bandwidth, etc. There are many existing research works on how to perform

network measurements and collect path information effectively.

2.2.1 Measuring Network Latency

Network distance can be measured in a variety of ways including latency, hop counts,

geographic distance, etc. Ping and traceroute are two popular tools to measure

network distance in terms of latency and hop counts respectively.

The latency between two hosts is an important network characteristic that,

if reduced, can be used to provide better services to end users and to improve

performance of applications. For example, a game server can match users with

low latency paths, a content distribution network can locate the closest server for

its customers by comparing the latency between servers and customers, and a P2P

network can use latency information to organize peers.

Performing measurements between every pair of hosts to get distance information

(in terms of latency) does not scale. A better approach is to try to predict the network

distance. IDMaps [31] uses special HOPS servers to maintain a virtual topology map

of regular hosts and special hosts called Tracers. If dAB is the distance between host

A and B, and TA is the nearest tracer to host A, IDMaps estimates dAB as follows:

dAB = dATA
+ dBTB

+ dTATB
.

13

The accuracy of IDMaps can be improved when the number of Tracers is increased.

Global Network Positioning (GNP) [32] can also be used to estimate the Internet

network distance. Every node in GNP has a coordinate, and the coordinate distance

between two nodes is used as the estimated network distance. First, GNP picks N

nodes as Landmarks. Second, when a host joins the system, the coordinate of the

host is calculated in a way to minimize the error between the measured distance and

the computed distance from the host to all the Landmarks. GNP takes a peer-to-

peer approach, and each peer computes its own coordinate, which makes GNP easy

to scale. One disadvantage of the peer-to-peer approach is that a host can lie about

its coordinate. Another disadvantage is that landmark nodes could be overloaded if

many hosts join GNP at about the same time.

The major difference between GNP and IDMaps is that GNP uses an absolute

coordinate for each end host. The estimated distance between two hosts can be easily

computed based on the coordinates. However, these approaches (e.g., IDMap and

GNP) assume a stable network. The accuracy of prediction could be greatly affected

by frequent network topology changes. GNP uses the estimation mechanism to deal

with the scalability problem, and only provides an approximate distance between

two end hosts. The estimated distance (in terms of latency) provided by GNP may

not be useful for latency sensitive applications that require accurate latency values.

The estimated latency may help NPAS give advice to applications on choosing paths

whose latency do not change frequently. However, to give accurate path advice to

applications on choosing paths whose conditions change frequently, NPAS needs to

collect up-to-date and accurate latency information.

2.2.2 Active Bandwidth Measurement

Network bandwidth is another important metric for applications, especially for

applications that have specific QoS bandwidth requirements. For example, a video

14

streaming server can dynamically adjust its streaming rate based on the measured

bandwidth. Content can be distributed at a dynamic rate based on the available

bandwidth in a content distribution network (CDN) [33]. A “backup” application

may choose idle paths for replicating data. In addition, Internet users may want to

check the bandwidth on the path they paid for.

Bandwidth can be measured hop-by-hop [34, 13, 35], or end-to-end [36, 37, 15,

38]. Hop-by-hop bandwidth measurement relies on the fact that the one-way delay

(note that the one-way delay is often estimated using RTT to avoid installing special

software in the router) changes as the packet size increases, and it requires routers

to generate ICMP replies. Since intermediate routers may have different processing

paths for replying to ICMP packets, hop-by-hop bandwidth measurement is often

inaccurate. End-to-end bandwidth measurement requires cooperation between the

sender and the receiver. There are two types of bandwidth to measure. One is

available bandwidth (unused bandwidth) along a path, which is determined by the

link with the minimum available bandwidth. The other is capacity along a path,

which is determined by the link with the minimum capacity (raw bandwidth of the

link).

Packet pair technology [15, 39, 40, 41] is one technique that is used in bandwidth

measurement. However, the accuracy of packet pair technology can be affected by

cross traffic. To address the cross traffic effect, Dovrolis et. al. [15] propose a method

to estimate the capacity, and the method has been implemented in a tool called

pathrate. Pathrate divides estimated capacity results into three categories: Capacity

Mode (CM), Sub-capacity Dispersion Range (SCDR), and Post-Narrow Capacity

Modes (PNCMs). Estimation results in CM correctly represent the actual path

capacity, while results in SCDR and PNCMs underestimate and overestimate the

capacity respectively. The goal is to distinguish CM from PNCMs and SCDR. Their

simulation results show that when the cross packet size varies uniformly, the dispersion

15

of the estimation results is less predictable. However, the CM is still distinct from

PNCMs in the distribution of results.

Packet tailgating is another technique used in bandwidth measurement. Harfoush

et. al. [38] introduce a method that makes use of packet tailgating to measure

the capacity of an arbitrary subpath. However there exist certain conditions where

subpath capacity cannot be measured. In addition, this approach [38] assumes that

there is no cross traffic. Cross traffic can either lead to capacity underestimation or

capacity overestimation.

The methods described in [15] and [38] focused on measuring the capacity of a

path. In addition to the capacity of a path, an application may also need to know

the available bandwidth of a path. Spruce [37] is a tool to measure the available

bandwidth of a path. There are two main approaches used for available bandwidth

measurement: the probe gap mode (PGM) and the probe rate mode (PRM). Tools

such as Pathload [14], Pathchirp [42], PTR [43], and TOPP [44] use PRM to measure

the available bandwidth. Spruce uses PGM to measure the available bandwidth, and

can effectively keep track of the available bandwidth due to its simplicity and lack of

tunable parameters.

The bandwidth measurement techniques discussed above can be used by NPAS

to measure available bandwidth between monitoring points, and to infer bottleneck

links. NPAS can use these active bandwidth measurement techniques for paths/links

on which NPAS can not measure bandwidth using passive methods.

2.2.3 Passive Bandwidth Measurement

Active measurements are usually used for measuring the available bandwidth of a

path. However, under certain circumstances, passive measurement can measure the

maximum throughput of a network path with acceptable accuracy. For example,

Gerber et. al. [45] introduce a passive method to measure the maximum throughput

16

in a wireless network. Some of the traditional active bandwidth measurement tools do

not consider the additional delay caused by a wireless network (e.g., packet loss due

to wireless transfer, or the scheduling of wireless transmission). Compared to passive

network measurements, traditional active measurement tools impose additional traffic

on the network, are expensive to deploy, and do not consider that real users are at

different vantage points in a 3G network. Passive max-throughput measurement in a

wireless network has its own challenges. First, the TCP slow start is longer in wireless

environments. Second, the flow may be rate limited by the content providers.

The passive max-throughput measurement in [45] is based on the analysis of

TCP flow records collected passively, and can estimate the maximum throughput

of wireless networks. However, the accuracy of estimation is affected by the way in

which unwanted flows are filtered out. As noted earlier, bandwidth is an important

metric NPAS would like to know to help applications select the appropriate routing

paths. Making use of passive bandwidth measurement technologies can help NPAS

get the path bandwidth information without introducing too much overhead on the

network.

2.2.4 Application-specific Network Metrics

We know passive flow records can be used to estimate available bandwidth.

However, an application may need to know other types of network information,

which may require inspection of specific types of packets or flow records. Several

application-specific monitoring systems have been used to collect application-specific

network information. However, application-specific monitoring systems have several

disadvantages. First, the implementation of multiple monitoring systems on routers

is complicated, including the allocation of routers’ resources to multiple systems.

Second, applications change over time, as well as their network traffic patterns.

To address these problems, the “minimalist” approach [46] can be used to monitor

17

network flow, which has several features:

• A few generic primitives. To reduce the router complexity, only a few primitives

are imposed on routers.

• Separating collection from computation. To satisfy generic applications,

computation needs to be performed separately from collection so that different

analysis can be performed on the collected records.

• Network-wide management. Scheduling of monitoring on routers is necessary

to provide network-wide management.

The “minimalist” approach [46] is a feasible rather than an optimal solution of

adaptive passive monitoring system for applications. The experimental results show

that the minimalist approach has comparable performance to application-specific

approaches.

We learn from the “minimalist” approach that although NPAS is an application

driven system, the design of NPAS needs to be generic to meet the requirements for

various types of applications.

2.2.5 Packet-Level Traffic Measurement

The amount of network performance information that can be retrieved from flow

records is limited. In some cases, packet-level traffic measurement is necessary.

The benefits of packet-level monitoring include: determining the amount of over-

provisioning in a network, studying traffic dynamics, detecting network anomalies,

identifying network congestion and studying TCP behavior, and evaluating the

network’s capabilities to support new services (e.g., QOS) [47].

Fraleigh et. al. [47] propose a packet-level measurement architecture: IPMON.

IPMON focuses on collecting packet-level traces from the Sprint IP backbone, and

supports link speeds of up to OC-48 (2.5 Gbps). Each captured packet is marked

18

with sub-microsecond timestamps. The packet traces collected at multiple points

are synchronized to within 5 µs. IPMON infrastructure includes three elements: a

monitoring entity, a data repository, and a data analysis platform. Although IPMON

will not scale to monitor every link in a tier 1 backbone, the current scale of IPMON

can operate at a high speed and provide important data for understanding a network’s

dynamics. In the case that the detailed information on certain links/paths is required

for some applications, the existing techniques (e.g., IPMON) provide NPAS with

possible solutions to perform packet-level measurements.

2.3 Monitoring Various Types of Networks

There are measurement infrastructures that are designed for various types of networks.

Analyzing the existing monitoring systems can help us design NPAS for the future

Internet.

2.3.1 DNS based Measurement Infrastructure

The current Internet already has useful network-wide infrastructure that could be

modified/used to support monitoring. The Domain name system (DNS) [48] is an

example of such an infrastructure. ISPs may not want to deploy a new measurement

system which has a different architecture from the current Internet due to the cost

of using new devices and software. However, if a measurement system largely keeps

the current Internet infrastructure as is, only introducing small modifications, then

ISPs may accept and deploy the measurement system. DNS is a hierarchical naming

system, providing mapping from human readable domain names to various data such

as IP addresses. Because DNS servers are distributed throughout the entire Internet,

they can be used to estimate delay between end hosts [49, 50].

In [49], the authors introduce a technology called King which relies on the

DNS infrastructure to measure network distance. King assumes that end hosts

19

are close to their authoritative DNS servers that maintain their IP addresses. The

latency between end hosts A and B is approximated using the latency between their

authoritative DNS servers X and Y . King does not need the cooperation of A and B,

and any King client can measure the latency between DNS servers X and Y . All that

is needed is the ability to find out the authoritative DNS server for the end hosts.

Measurement systems such as King could have some potential drawbacks (e.g.,

King has problems with multiple DNS servers and DNS forwarders). However,

the accuracy of King can be improved with small modifications to the existing

infrastructure. Turbo King (T-King) [50] is an improved version of King. T-King

assumes that it has control of some DNS servers, and it can modify the behaviors

of DNS servers to perform an accurate latency measurement. T-King is able to deal

with the problem of multiple DNS servers and detect if a DNS forwarder is used

in the measurement process. Although T-King has advantages over King, certain

DNS servers need to be modified for measurement purpose while King requires no

modification of the DNS.

Note that the above DNS-based measurement systems cannot measure certain

path information. For example, measuring the bandwidth between DNS servers

provides little to no information about the bandwidth available between end systems.

Moreover, even the latency measurement between DNS servers and end hosts requires

active probes (ICMP messages) done by end-systems which could result in significant

measurement overhead.

2.3.2 Overlay Networks

An overlay network is a computer network built on top of another network. The

links in the overlay network are considered to be virtual or logical, consisting of one

or more physical links in the underlying network.

20

Because overlays are built above the IP layer, overlays can develop and use any

addressing, routing, and forwarding algorithms they wants. For example, distributed

hash tables (DHT) (e.g, Chord [51] and Tapestry [52]) can be used for routing in

an overlay network. In addition to the DHT protocol, many other protocols, such

as JXTA [53], XMPP [54], Freenet [55] Tor [56], and Gnutella [57], can be used in

the overlay network for communication between peers. However, the overlay network

does not have control on how the underlying network routes packets between overlay

nodes.

There is some research (e.g., BARON [58]) that studies the path metrics for

different paths in overlay network to select paths between peers. BARON [58] assumes

a relatively small number of overlay routers and thus takes a brute-force approach

to monitoring, intrusively monitoring the virtual links between every pair of overlay

routers which does not scale and imposes a significant monitoring load on the network.

NPAS, on the other hand, focuses on determining a small set of links/nodes that need

to be monitored based on the current needs of applications.

2.3.3 Virtual Networks

A virtual network is a computer network that consists of virtual resources (e.g.,

virtual links, virtual machines, virtual routers). There are two types of virtual

networks: protocol-based virtual networks and virtual-device-based virtual networks.

Protocol-based virtual networks include Virtual Local Area Networks (VLANs) [59],

Virtual Private Networks (VPNs) [60], Virtual Private LAN Service (VPLSs) [61],

etc. Virtual-device-based virtual networks are networks connecting virtual devices

(machines), such as Emulab [62], Planetlab [63], VINI [64], and GENI [3].

The monitoring infrastructure for a virtual network should not only provide inter-

faces for the network administrator, but also for network-aware applications so that

the applications can benefit from the monitoring infrastructure [65]. Ciuffoletti [65]

21

proposes a solution to make a network monitoring system on a virtual network

configurable by applications. Obviously, one does not want an application to fully

control the network monitoring system for security concerns. Fortunately, network

monitoring tools can be designed as plug-ins to virtual hosts.

Monitoring systems on virtual networks are often constrained or influenced by the

virtual environment. For example, physical resources are often shared by multiple

experiments in virtual networks like Planetlab, and the monitoring system must also

share (i.e., run on top of) the physical network resources. Resource scheduling needed

by shared environments often leads to difficulty in gathering fine-grained timing

information. Timing is important when calculating, for example, the difference

between the time the request packet was sent and the time the reply packet was

received, needed to compute the RTT between two nodes. When measuring the

RTT in the Planetlab environment, there can be a delay between the arrival of the

reply packet and the processing of the reply packet, leading to an inaccurate RTT

estimation because the resource that the measurement process needs is unavailable

at the time the packet arrives.

The multi-user active measurement system (MAD) [66] can be used to solve the

timing problem for performing measurement in a shared environment. The idea

behind MAD is to have certain measurement code running at the highest priority

level so as to gain accurate timing. As a measurement system running on virtual

networks, MAD also takes features of the virtual network into account thereby

supporting multiple users, imposing low impact on shared nodes, and having flexibility

for different measurements.

The Paths requested by applications can be a virtual path or a path that goes

through a virtual network. Consequently, understanding virtual network technology

can help NPAS measure and evaluate these paths.

22

2.4 Measuring the End-to-End Path

Tomography-based models [19, 20, 67, 68, 69, 70, 71, 72] can be used to calculate

end-to-end path information. However, tomography-based models often assume a

static network matrix and calculate link information based on estimation rather than

directly measuring the link. In a network where the path conditions change frequently

over time, applications need a monitoring system that can provide up-to-date path

information to choose the appropriate paths. In addition, the number of nodes that

need to be monitored by network tomography models [73, 74] is still far higher than

the number of nodes NPAS expects to monitor (e.g., 100 nodes globally).

There is also some research on finding routing paths for applications in overlay

networks [25, 26, 27]. These approaches described in [25, 26, 27] focus on finding a

small set of paths for applications with the help of topology information rather than

paying attention to the evaluation of the paths being found. Nakao et. al. [25]

propose a routing underlay. When making application-specific routing decision,

overlay networks query the routing underlay. The routing underlay, in turn, asks

the underlying Internet for topology information. Although in [25], the authors have

realized the need of making informed application-specific routing decision, they do

not address the issue of measuring possible paths and helping applications choose the

appropriate paths. The one-hop source routing infrastructure [27] describes a method

to find k alternative paths between two nodes, but it probes all k paths that have

been found before a final path can be chosen. The one-hop source routing approach

leads to the scalability problem if all applications need to make such probes before

they send out each traffic flow. Fei et. al. [26] propose an approach for selecting a

good alternative path from a large number of available candidates. However, this

approach [26] finds the alternative path based on how the path is divergent from

the default path, and tries to reduce the likelihood that the alternative path quickly

merges back into the default path by choosing relay nodes that are “far” from the

23

default path. The approach in [26] does not measure the alternative paths and use the

end-to-end measurements to select a path that meet the application’s requirements.

On the other hand, NPAS assumes that there already exist a small set of paths, and

designs a scalable approach to measure these paths.

2.5 QOS Routing

Quality of service (QoS) is important for many applications. The Resource

Reservation Protocol (RSVP) [75] is a transport layer protocol which can be used

to provide QoS for applications. RSVP is not a routing protocol. Instead, RSVP is

designed to interact with the current or future routing protocol to reserve resources

across a network. Because the resources in a path are reserved, an application with

specific QoS requirements can be satisfied when the application uses the path. In

order for RSVP to work, the routers in the path, on which the RSVP tries to reserve

resources, need to understand the RSVP protocol and be able to reserve the required

resources.

RSVP is a receiver driven protocol. The receiver initiates a resource reservation

request along the path to the sender for a flow. The request includes the Flowspec and

the Filterspec. The Flowspec contains the QoS requirements of a flow, and routers

can schedule packets based on the Flowspec. The Filterspec tells routers how to

identify packets that should be affected by the Flowspec. RSVP requires the router

to maintain soft state of resource reservations. To keep resources reserved in a path,

the soft state needs to be periodically refreshed by a path message (a path message

is sent by the sender to set up a reversed path) or a reservation request message.

There are several disadvantages of using RSVP to provide QoS for applications,

including:

• Routers have to implement RSVP to reserve resources, which leads to a

complicated router design.

24

• Routers have to maintain state information for RSVP, which causes scalability

problem.

Yang et. al. [76] provide a solution to End-to-End QoS guaranteed routing. The

approach in [76] assigns a certain amount of bandwidth to each edge router. The

edge router allocates assigned bandwidth to flows that are originated from that edge

router. By having each edge router remember the usage of its assigned bandwidth, an

edge router can make decisions to accept/reject flows instantaneously without hop-

by-hop signaling. However, the edge routers need to maintain the state of assigned

bandwidth, and the assigned bandwidth at edge routers needs to be updated when

the bandwidth demand is changed.

In short, existing QoS routing approaches (e.g., RSVP) consider path character-

istics (e.g., available bandwidth) when selecting paths. Routes are selected based on

what can be reserved/guaranteed and thus these approaches focus on the problem of

simultaneously finding and reserving a path with sufficient resources. NPAS, on the

other hand, is designed to give information/advice about the behavior of all paths

specified in the request. Moreover, because QoS approaches require control of the

routers along a path (i.e., to make reservations), they are often limited to a particular

domain and cannot be used end-to-end.

25

Chapter 3

Future Network Environments

While the current Internet Protocol (IP) supports loose source routing, it is not

widely used and in many cases is not supported by ISPs. However, current overlays

and many proposed future network architectures support source routing – or at least

path selection. NPAS is designed for these types of networks.

To empower applications with the ability to select paths across the Internet and

enable NPAS to collect measurement data from the network, we must first explain

the types of future networks that we envision NPAS being used with. In particular,

we need to explain how monitoring will be supported in future networks, how paths

could be represented by the routing service, and the role of the routing service.

3.1 Support for Monitoring in the Future

A path can span multiple ISPs. Although ISPs may want to hide path performance

information within their domains, ISPs may provide inter-AS link performance

information such as latency (including the queuing delay) and available bandwidth

on the inter-AS links – links that connect two ASes. Providing such information does

not reveal the intra-domain routing information, but can help attract traffic to an

AS. In the model described in ChoiceNet [77], ISPs are paid based on the amount of

traffic that goes through their ASes. Providing AS-level link information to NPAS

can result in NPAS recommending paths that traverse that link. Consequently, the

26

AS can make money by advertising its inter-AS links. Alternatively, NPAS can pay

ISPs for certain measurement data.

To collect end-to-end path information, NPAS needs (direct or indirect) access to

monitoring points, controlled individual ISPs (we do not assume NPAS has control

of monitoring points). Consequently, NPAS depends on individual ISPs to provide

accurate path/link information. If an AS intentionally provides inaccurate path/link

information, NPAS could find out whether the path information is correct with the

help of end-to-end measurements (e.g, feedback from applications) and measurements

between trusted ASes. For simplicity, in this thesis, we assume that ASes who

provide path information to NPAS give out accurate information. Since it could

be expensive for NPAS to set up service level agreements (SLAs) with ISPs, NPAS

limits the number of ASes (monitoring points) from which NPAS needs to collect

path information.

We expect NPAS will collect network information that most applications are

concerned about, such as latency and bandwidth, from the monitoring points.

Various measurement tools can be used in future networks to get path information.

For example, the commonly used program ping can be used to gather latency

information between network nodes. ISPs can use whatever measurement tools they

want on the monitoring points. In addition, ISPs may allow customers to deploy

measurement tools. For example, ISPs may support new service infrastructure, such

as infrastructure as a service (IaaS) [78] (e.g., Amazon EC2), and platform as a

service (PaaS) [79] (e.g, Google App Engine), which allow users to run their own

measurement tools or support APIs that can be used to develop measurement tools.

NPAS can also make use of these services to collect path information that is of interest

to applications.

To monitor the Internet in a scalable way, we assume that NPAS has the ability

to enable/disable monitoring at various monitoring points in the network (but not

27

necessarily at all monitoring points). We expect ISPs will provide APIs that can be

used by NPAS to inform ISPs that monitoring on specific links is no longer needed.

Emerging network technologies, such as programmable networks, allow dynamical

control of the network nodes. As an example, consider the GENI network [3], in which

nodes can be customized to dynamically load and run node-specified programs. In

the future network, similar technologies may be used to enable NPAS to dynamically

turn on/off monitor. Alternatively, we may have something like the current Internet

with SNMP ability to interact with and control network monitoring points.

3.2 Network Topology and Paths

a
e

g h

b

dc
f

Link

Figure 3.1: A Network Topology

In order for the routing service to return paths that can be understood and used

by applications, we need to define a way to represent paths. Towards that goal, we

assume that the network topology can be represented by an undirected graph of nodes

and links. A network node relays packets from one link to another, while a link transits

a packet from one node to another. Moreover, we assume that each link is identified

by a unique identifier1. An example network topology with identifiable links is shown

in Figure 3.1. In today’s Internet, one could uniquely identify a link using a pair of

IP addresses assigned to the endpoints of the link. In future network architectures,

1Note that one could (alternatively) identify nodes instead of links.

28

we may see a variety of different addressing schemes such as the addressing approach

used in the Postmodern Internet Architecture [7] which assigns each link a unique

channel ID. Given a topology of nodes and links, we assume that a network path is

described as a sequence of identifiers that represent the links along the path2. For

example, a path P , which goes through links a, e, g, and h, can be represented as

a− e− g − h.

a
e1

g h

b

d1

c

f

Links

e2 e3
i

m

d2

d3

Domains

Virtual Links

A

B

Figure 3.2: A Network Topology With Virtual Links

Because ISPs may not want to reveal information about their internal paths, we

assume that some links may be virtual links : imaginary/logical links that have some

(unknown) mapping to physical links. Virtual links can be used to represent intra-

domain paths without specifying how packets are routed from one node to another.

For example, link e and link d in Figure 3.2 are virtual links that consist of other links.

As shown in Figure 3.2, virtual link e consists of link e1, link e2, and link e3. Link e

is used to represent a route across domain A without revealing the underline physical

links. Similarly, virtual link d consists of several links: d1, d2, and d3. Instead of

representing a route across a single domain, link d is used to represent a route across

2Alternatively, one could use a series of nodes to represent a path

29

multiple domains: domain A and domain B. Virtual links can be recursively defined.

In other words, link d1, d2, and d3 can also be virtual links.

a

Queuing

Delay

Queuing

Delay

Delay,

Loss Rate,

Bandwidth,

Jitter,

Signal

Strength,

etc.

Figure 3.3: Link Characteristics

As shown in Figure 3.3, a (virtual) link has many metrics, and applications

are interested in certain link metrics such as latency (including queuing delay),

bandwidth, jitter, loss rate, and signal strength (for wireless links). Since a path

consists of one or more links, NPAS needs to collect link measurements in order to

evaluate the path for applications.

a

Measurement

Points
Link

(a)

a

(b)

b c

Figure 3.4: Network Measurement Points

To collect link measurements, NPAS needs to place monitoring points on the

endpoints of links, as shown in Figure 3.4a. We assume that given a link name,

the two endpoint nodes that are connected by the link can be identified. Therefore,

given a path that consists of links, it is possible to identify nodes to place monitoring

points on. Although it might not be allowed to place monitoring points on certain

nodes, placing monitoring points on the neighboring nodes can help NAPS measure

30

the path across the links that do not enable monitoring points. For example, as shown

in Figure 3.4b, although link b does not allow monitoring points, monitoring points

on link a and link c can measure the path information from link a to link c.

Because paths can consist of both physical and virtual links, we assume that

NPAS must be able to return information about paths that contain virtual links

(even though NPAS may not know the way in which these paths are mapped onto

physical links). For example, in Figure 3.2, e-i-g-h is a path, and link e is a virtual

link on the path. NPAS may still be able to provide some information about the

end-to-end performance of path e-i-g-h without knowing how link e is mapped to

physical links.

Two links are said to be adjacent if they connect to the same node. A contiguous

path is a path where every pair of links in the path are adjacent. In Figure 3.2,

path e-i-g-h and path a-e1-e2-e3-i-g-h are contiguous paths. However, path a-g-h is

not a contiguous path since link a and link g are not connected to the same node.

A non-contiguous path is called a partial path because some links in the path are

not adjacent. Partial paths are useful for representing paths with missing links. For

example, in the extreme case, one might specify a path that only gives the outgoing

link from the source and the incoming link at the receiver with all other links in

between missing. While NPAS may not be able to do much with such paths, it

should still be able to provide whatever information it has for the partial paths.

3.2.1 The NPAS’s View of Topology

NPAS is not a routing system. NPAS does not know the topology or have any

way of requesting topology information like a routing system does. However, NPAS

does have access to certain ASes in the topology to turn on monitoring, but this

is different than being able to gather routing information from these ASes. NPAS

will gradually learn the topology by piecing together path requests. (This assumes

31

that NPAS receives path requests that have been created by the routing services and

that applications have not modified/corrupted them. Routing services might need to

“sign” their paths). In addition, NPAS does not participate in any routing protocols.

NPAS is not designed for any particular metric (e.g., latency, bandwidth, etc.), but

instead can request measurement information from certain ASes about these metrics

and it knows how to combine them using either additive or max/min composition

of values. New types of metrics (e.g., jitter, loss rate, etc.) could be added without

changing the way the system works. So there is no overhead needed to collect routing

information, and there is no convergence needed to stabilize on routes.

Routes that are provided by ISPs might have different granularity about individual

links of a route. For example, ISPs may use one virtual link to represent a path across

a domain or across multiple domains. Alternatively, ISPs can provide more detailed

information about an intra-domain route by providing several inter-connected intra-

domain (virtual) links in the route. NPAS will simply build a network topology at

the granularity ISPs provide.

In this thesis, we assume applications can choose the AS-level path. The AS-level

routing policies are enforced by the routing system, not NPAS. NPAS is designed to

select from the set of paths allowed by the routing system. In that sense, NPAS does

not violate AS-level routing policies when it selects an AS-level path. NPAS’s job is

to collect the inter-AS link information and eventually calculate the end-to-end AS-

level path information. Individual ASes can have their own methods of controlling

intra-AS routes, and NPAS does not help applications pick intra-AS routes.

The routes returned by the future routing service can be represented as a list

of AS-level links that connect different domains. Typically, the endpoints of the

inter-AS links are ingress points and egress points of connecting domains. In the

current Internet, each AS can be considered as a domain in the network topology. As

described in Figure 3.5, a route from the sender to the receiver goes through AS1,

32

AS3

AS1

AS2

AS4

Sender

Receiver

Int0

Int1 Int2 Int3

Int4

Int5

Int6

Int7

Figure 3.5: A Simple Network Topology With Monitoring Points

AS2, AS3, and AS4. Int0 to Int7 are the endpoints of the incoming and outgoing

edge links of the ASes. The routing service may only be able to tell applications that

the route goes through 3 AS level links: AS1−AS2, AS2−AS3, and AS3−AS4. By

placing monitoring points on the endpoints, NPAS can obtain the link information

about 3 AS level links: AS1−AS2, AS2−AS3, and AS3−AS4. Although NPAS does

not focus on the intra-AS routes, NPAS can still estimate the condition of intra-AS

routes if NPAS has the ability to perform measurements between monitoring points.

For example, by performing measurement between monitoring points Int0 and Int1,

NPAS can estimate the condition of the route across domain AS1. Because ISPs can

dynamically change intra-AS route in case of congestion on intra-AS links, we focus

on monitoring the inter-AS links in the rest of this paper.

3.3 The Role of Routing in the Future

As noted earlier, the future Internet is likely to allow applications to choose routing

paths. To provide applications with the ability to pick end-to-end paths, the future

routing service will need to find connectivity between nodes. In other words, an

application will rely on the routing service to find a set of possible paths between

two nodes. It is the routing service’s responsibility to verify that the returned paths

33

exist. We do not assume that the routing service is able to rate paths based on their

real time QoS, because there are a huge number of paths network-wide, and it is

infeasible for the routing service to keep track of the fast changing path information

of all paths. Therefore, NPAS is designed as a supplementary service to the routing

service. Applications that need further advice on path selection can make use of

NPAS.

This implies that the routing service will not need to find the “best route”. The

concept of “best” will be something that NPAS is responsible for. While this simplifies

future routing services (i.e., future routing service does not need to pick the final path

for applications), the new requirements of finding and returning multiple paths will

add some complexity.

3.3.1 Finding a Set of Possible Paths

Future routing services are not expected to select a single “best” path between a

source and destination as is currently done by protocols such as BGP [1], but rather

future routing services will be designed to return a set of paths that are assumed to

be up and capable of providing connectivity between a source and destination. The

simplest routing service may only be concerned with connectivity, with no ability

to rank paths at all. However, even these simple services will need to limit the

number of paths they find/return to applications because the number of paths can

quickly grow to be very large. Future routing services are unlikely to maintain fast

changing QoS information that would help applications determine routes. Nor will

routing services pick the best path (or paths). Some important network metrics

that greatly affect the performance of applications, such as available bandwidth

and latency, change dynamically. Because of measurement overhead and processing

overhead, it is infeasible for the routing service to monitor all the paths in a network to

collect dynamical network information that is required to select paths for an arbitrary

34

application.

If no ranking information is available, the routing service would select a subset

of the paths based on its own internal algorithm (e.g., a depth-first search of the

topology, a route selection based on randomly chosen intermediaries as described in

[27], or a random selection from the list of all known paths). However, in general, we

assume that routing services will make use of static link characteristics (e.g., static

link capacity) and the number of links in a path to rank paths and then return

the top paths. For example, Ascigil et. al, [9] describe an approach that computes

paths using static QoS information, and has some ability to integrate fast changing

QoS measurements in path computation (if they were somehow available). Another

example method of finding a small number of paths between a source and destination

is to return paths based on the number of links in the path. Routing services can sort

the paths firstly by the number of links and secondly based on the static capacity

of the links. These sorted paths can be used as the candidate paths when routing

services provide applications with the possible paths. However, one can imagine

routing services that attempt to distribute load by returning continually changing

subsets of paths that ensure applications are not always selecting from the same set

of paths.

3.3.2 Specifying Path Queries

Applications might interact with the future routing service in the following way:

applications tell the routing service how many paths they would like to know about,

and get back a certain number of paths. However, the routing service does not find

the “best” paths for applications.

We assume that paths returned by the routing service are contiguous paths.

Contiguous paths enable NPAS to uniquely identify a path. Note that internal

35

network details can still be hidden by the routing service by returning contiguous

paths that contain virtual links.

An example API for a future routing service is described as follows:

• Input: the number of paths that are requested by applications

• Output: a list of (AS-level) paths that are sorted firstly by the number of virtual

links in the paths and secondly by the static link capacity.

In our envisioned networks, applications can ask NPAS to evaluate the contiguous

paths that they obtain from the routing service.

36

Chapter 4

A Network Path Advising Service

After a routing service has identified a set of viable paths between a source and

destination, it becomes the task of the Network Path Advising Service (NPAS) to rank

or recommend which path (or paths) from the set are the best for the application.

Defining such a ranking requires gathering information from the application in terms

of its requirements and desires and requires information from the network in terms of

its current performance. In the following, we describe example ways in which NPAS

might be used, present a brief description of NPAS’s features, and then provide an

overview of the NPAS system.

4.1 Using NPAS

We envision applications issuing NPAS API calls to rank or rate the set of paths

found by the routing service. An application sends the set of paths returned by the

routing service, together with its own path requirements (e.g, the minimum amount

of bandwidth needed), to NPAS asking it to rank the paths from best to worst. NPAS

then comes up with a ranking/rating based on the application’s specific requirements.

Based on the path ratings, an application can then decide which path(s) it wants to

use.

While the path ranking features of NPAS are largely focused on helping senders

select paths, NPAS also offers services to receivers. In particular, a receiver can

37

inform NPAS about the paths it prefers to receive traffic from. For example, the

receiver may have several major incoming paths, and wants the incoming traffic to be

distributed across the available paths according to some rules (e.g., the receiver may

limit the amount of traffic it wants to receive on each path). The receiver sends its

requirements to NPAS. Subsequently, when NPAS rates routing paths for the sender,

NPAS can also take the requirements of the receiver into consideration.

An application does not need to use NPAS on a per-packet basis. Instead, an

application will use NPAS on per-flow basis. In addition, an application can also

cache the advice provided by NPAS and continue use the same advice for new flows

as long as the application does not experience poor performance of using the previous

recommended path.

S

H

A

Routing Service

NPAS

1

2

3

4

5

C

Figure 4.1: NPAS Use Cases

To understand how NPAS works, let’s consider the example illustrated in

Figure 4.1. Suppose S is a video streaming server, A is a customer of S, and H

is A’s gateway router. A wants to watch video that requires 1Mbps bandwidth.

Suppose A has the ability to choose a path in the cloud C, and A wants to pick a

single path to communicate with S. A first queries the routing service for possible

paths across C. The routing service returns path 1 to path 4 to A. A then uses NPAS

to evaluate paths 1 to 4, and A also specifies the available bandwidth requirement

(e.g., > 1Mbps) and latency constraints. The path evaluation results from NPAS

38

may be presented as a ranking. Suppose that path 2 has the highest ranking. A

can simply choose path 2. Alternatively, A can request detailed path information for

path 1 to 4, and make its own decision to select a path. After a path is chosen, A

can observe the path performance characteristics by using the path. A can then send

feedback about its experience of using the path to NPAS.

Although path 5 is not included in the request, NPAS may have learned about

path 5’s existence and performance from other applications or previous queries. NPAS

may have information about path 5, and believe that path 5 may also fit A’s needs.

Suppose that NPAS, in addition to rating paths 1 to 4, also recommends path 5. A

may decide to use the path 5 or stick to the set of paths it asked about – i.e. to stick

with path 2.

4.2 NPAS Features

While NPAS does not assume that every router is programmable or configurable, for

those routers that are controllable by NPAS (possibly with the help of ISPs), NPAS

should be able to dynamically turn on and off monitoring. Because NPAS is driven

by requests from applications, NPAS knows what network performance information is

needed to support applications, and can make intelligent decisions about what needs

to be monitored and how frequently data should be gathered.

By virtue of being asked, NPAS learns that a sender is interested in the requested

paths. Because monitoring network paths consumes network resources, it is not

scalable for NPAS to monitor all the paths in a network. To deal with the scalability

problem, NAPS does not promise or guarantee that it will evaluate all paths. However,

the expectation is that the amount of information that needs to be collected frequently

on small timescales is relatively small compared to the amount of information that

does not require frequent updating. For example, information on paths that are not

used or infrequently used by applications does not need to be collected frequently. In

39

other situations, network performance information may be requested by applications,

but does not change quickly. For example, the capacity of a link will not change and

thus only needs to be collected once. The goal is for NPAS to focus monitoring on

the areas of the network that will help it answer the largest number of questions. In

general, by focusing on popular paths and only monitoring the important changes,

NPAS can keep the monitoring load to an acceptable level.

Although NPAS is not specifically designed for network administrators, network

administrators can also benefit from NPAS. For example, the updated path statistics

that are provided by NPAS may help network administrators determine whether there

is something wrong with the path. However, network administrators may still want

to perform additional measurements on certain nodes/links to identify the problem.

NPAS can use several methods to collect path information. In addition to

monitoring the network directly, feedback from applications using the network can

also be an important source of path information. The feedback may include specific

performance metrics such as the sending rate an application actually reached, or just

the application’s final decision about the routing path (i.e., which path it ended up

choosing after asking NPAS for advice). Feedback not only helps NPAS evaluate

paths for which it has no monitoring data, but also helps NPAS reduce the number of

measurements that need to be collected when feedback from applications has already

provided the information needed to make accurate ratings of paths.

4.3 The NPAS System Architecture

Figure 4.2 illustrates the architecture of the NPAS system. At the heart of the

system is the core NPAS service that is operated by the core NPAS service provider.

Although companies may provide core NPAS services targeted at different types of

applications (e.g., bandwidth sensitive applications, security sensitive applications,

etc.), we expect that there are only a small number of (e.g., less than 10) core NPAS

40

Shared NPAS Server Shared NPAS Server

Shared NPAS Server Shared NPAS Server

NPAS Collection Server

Applications
Router Router

AS 1 AS N

AS 2

Core NPAS Service

NPAS Local

Request Server

i

NPAS Local

Request Server

Figure 4.2: The NPAS System Architecture

service providers offered globally (i.e., NPAS service providers that are targeted at the

global Internet.) 1. The core NPAS service is responsible for gathering measurement

data from routers through the NPAS collection server (indicated in lines e and f)

and distributing measurement data to the NPAS Local Request Server (line g). The

core NPAS service consists of a collection of Shared NPAS Servers. There could be

dozens of shared NPAS servers that are distributed across the Internet for a core

NPAS service. Each shared NPAS server is responsible for collecting data from a

certain number of NPAS collection servers and distributing data to certain NPAS

local request servers. The shared NPAS servers communicate with each other to

aggregate measurement data collected from NPAS collection servers. A shared NPAS

server is a server cluster that consists of multiple physical servers. Some of the

physical servers can be used as the backup servers to improve the reliability of the

NPAS system.

To start using the NPAS service, applications (clients) issue NPAS requests

through a NPAS Local Request Server (line a). The NPAS local request server uses

path information distributed by the shared NPAS server and some locally available

path information to offer path advice for applications (line b). The NPAS local request

1The remainder of the thesis will describe NPAS in the context of a single core for the purpose
of clarity.

41

server can be deployed by any AS who wants to provide path advice to applications.

Although we do not assume NPAS local request servers will share their local path

information, it is still possible for a NPAS local request server to get some local path

information from other NPAS local request servers (line i) if the trust relationship

can be established. The NPAS local request server periodically forwards applications’

requests in an aggregated manner (e.g., once per 30 minutes) to the shared NPAS

server (line c) in order to help the shared NPAS server find out what data are being

requested by applications. Alternatively, the local request server can choose to send

aggregated requests immediately without waiting until the next update in case that

there is a significant reduction (e.g., 10% reduction) in the percentage of traffic that

NPAS can offer advice for. The shared NPAS server, in turn, after detecting change

of the requested paths, determines the new set of links/paths to be monitored. The

NPAS local request server also helps hide the identity of the application by acting as a

proxy between the shared NPAS Server and the application. The aggregated requests

contain information about paths that are requested by applications, what metrics

are of interest to applications, and how many times these metrics are requested

on the path, but does not contain information about the exact time of individual

requests and the specific requirements of a request such as the amount of bandwidth

being requested or how long will the application use the path. As a result, while

aggregated request information helps the core NPAS service find what paths/links

need to be monitored, it does not reveal detailed request information of the source AS.

Furthermore, the NPAS local request Server can choose to remove requests that are

considered to contain sensitive data from the aggregated requests to protect privacy,

or choose a trusted core NPAS service.

On the monitoring side, the shared NPAS server relies on NPAS collection servers

to turn on monitoring (line d and line e), gather measurement data (line e), process

measurement data, and then forward processed data to the shared NPAS Servers

42

(line f). NPAS collection servers are used to control data collection on specific

routers/nodes in the network. For example, the NPAS collection server talks to

individual nodes/routers to set up measurements, collect and aggregate measurement

results, and then sends the (aggregated) measurement results back to the shared

NPAS Server. It is expected that ASes would each have (or run) their own NPAS

collection server that would determine what information it sends to the shared NPAS

servers, and also determine what control over the measurement process it allows the

shared NPAS servers to have (note that the shared NPAS server may only need to

communicate with a small number of NPAS collection servers in order to provide

path advice for the majority of requests). NPAS collection servers also help reduce

the amount of traffic that is sent to the shared NPAS server by sending processed

data (e.g., computing the average value of measurements over a time period) instead

of raw data.

After getting the measurement data from various numbers of NPAS collection

servers, the shared NPAS server needs to distribute measurement data to NPAS

local request servers (line g). The NPAS local request server is also responsible for

collecting the application’s feedback. Because applications often communicate with

the same destination over and over (i.e., use the same path over and over), the NPAS

local request servers can cache path information and thereby enable fast response

for requests for the same path. The timeout for information stored in the cache is

determined based on the frequency at which the measurement is performed.

In order for the shared NPAS server to communicate with the NPAS collection

server and the NPAS local request server, they need to authenticate with each other.

We expect that the public-key cryptography based approach can be used to establish

symmetric session keys that can be used for communications between the shared

NPAS server and the NPAS collection server (or the NPAS local request server).

Since there are more than 40000 ASes currently in the Internet, the shared NPAS

43

server may need to distribute measurement data to more than 40000 NPAS local

request servers. However, the shared NPAS server does not need to distribute

measurement data at the same rate to all local request servers. The measurement data

distribution rate and the potential network overhead involved in the NPAS system

will be discussed in Section 6.5.

Network Applications

NPAS APIs

Advising Service Feedback Service

Network Monitoring Service

Network

Information
Storage
Service

Figure 4.3: NPAS Components

A NPAS system may contain different service components to support network

monitoring, path information collection/distribution, and path advice generation.

Figure 4.3 provides an example view of the NPAS service components. There are four

NPAS service components in a NPAS system: (1) the information storage service, (2)

the feedback service, (3) the advising service, and (4) the network monitoring service.

The shared NPAS server, the NPAS local request server, and the NPAS collection

server work together to support these NPAS service components. The information

storage service acts as a shared storage between all NPAS service components.

The feedback service tries to collect feedback needed by NPAS from applications.

The advising service evaluates routing paths based on specific requirements and

provides advice on choosing and using paths to applications. The network monitoring

44

service reasons out what paths and nodes should be monitored, schedules actual

measurements, and collects path statistics from the nodes being monitored.

45

Chapter 5

The NPAS Service Abstraction

A key aspect of NPAS is the service abstraction it presents to applications that use

the service. The abstraction is based on the premise that applications will need help

selecting and using paths, but will also contribute information back to the system

about end-to-end performance. In particular, applications may interact with NPAS

in three different ways. Consequently, NPAS supports three different Application

Programming Interfaces (APIs) that programmers can use to interact with NPAS.

In the first case, applications will need help evaluating a set of paths returned

by the routing service based on the requirements of the application. In this case,

applications will provide NPAS with the application’s communication requirements

and a set of paths. NPAS will then return a ranking of the paths. We call this the

NPAS Rating API.

A second way in which applications will interact with NPAS will be to request

information about how best to use a path or set of paths. For example, an application

may want to know how to schedule or multiplex packets across multiple paths to

achieve the best performance. We call this the NPAS Scheduling API.

Finally, applications will report their experiences using paths back to the NPAS

system to help it make more informed decisions in the future. Applications are in

the best position to evaluate the end-to-end performance of a path and can provide

this information in the form of feedback to the NPAS service. We call this the NPAS

46

Feedback API.

5.1 The Rating API

The rating API is designed to help applications identify the best paths. Both senders

and receivers can make use of the rating API. The rating API can provide applications

with a ranking and a rating. A ranking is an ordered list of paths, ranked from

best to worst for some metrics. A rating includes information about a path and

may include information about several metrics. The rating API may come back with

rating information together with the ordered list of paths or NPAS may choose to hide

the rating information. To rank or rate paths that are not completely monitored by

NPAS, partial path information and feedback from applications are used to calculate

ranking/rating results. In addition, the rating API may recommend paths that are

not requested by applications. Over time NPAS may have learned about paths

that could potentially satisfy the application’s requirements but are not requested

by applications. NPAS can also rate and recommend those paths to applications.

To appropriately rank (and rate) paths for an application, NPAS needs to know

the set of paths from which an application can choose along with the application’s

Quality of Service (QoS) requirements. If PS1 stands for a set of paths which an

application can pick from (PS1 can be represented as a list of paths), the input and

output of the first form of rating API (the rating API for senders) is described below:

• Input: PS1, list of QoS requirements

• Output: PS2, RS2

The list of QoS requirements can be formatted as a list of type and value pairs.

The type can be bandwidth, latency, or other metrics that NPAS supports. The type

can also be special information that applications would like to inform NPAS about,

such as “time” which tells NPAS how long the paths will be used and “algorithm”

47

which tells NPAS which algorithm should be used to rank the paths (e.g., rank the

paths based on a weighted combination of QoS metrics). The value indicates the

requirement for a specific type. For example, if type is bandwidth, the value can be set

to 1Mbps to indicate that the application requires 1Mbps bandwidth on the requested

paths. PS2 is an ordered subset of PS1 (possibly with some additional paths added

in – see below) that meet the QoS requirements specified by the application. RS2

contains the corresponding rating information for paths in the set PS2. The rating

tells an application how good a path is. The rating can be specific path information

or a “rating score” calculated by NPAS. The QoS given by the application defines

what metric to use when ranking and it determines the cutoff for that metric causing

only a subset of the given paths to be returned. Ranking can be determined from a

weighted combination of QoS metrics, and the QoS may define multiple dimensions

to the QoS (e.g., min bandwidth of 1Mbps and max latency of 10ms). The weight

of each metric can be determined based on the algorithm the application specified in

the input. The algorithm that is used to rank path can be based on the input order

of QoS metrics. For example, if the application specifies the bandwidth requirement

before the latency requirement in the rating API, NPAS can order the paths that

meet the requirements firstly by bandwidth and secondly by latency. Alternatively,

the probability based algorithm such as the model described in thesis [80] can be

used by NPAS to rank paths. Since a path that satisfies certain QoS requirements

may not satisfy other QoS requirements, providing different QoS requirements will

result in different ratings for the same path. With the first form of the rating API,

an application can pick the paths in the order as recommended in path set PS2.

Although the objective of the NPAS rating API is to rank the set of paths that the

application gives, it is possible that NPAS knows of other paths (in addition to the

ones presented by the application) that also work and meet the QoS requirements.

The rating API may also recommend new paths that are not part of the set specified

48

by an application. An application can make its own decision on whether to use

NPAS-recommended additional paths. So PS2 may contain paths that are not in the

requested set S1.

S

A

E F

B

D

Node

7 Mb/s (measured) 3 Mb/s (measured)

8 Mb/s (measured)

6 Mb/s (feedback)

Bandwidth between nodes

Physical Link Virtual Link

i

h

n

j

o p

k

q

r

m

Figure 5.1: Using the Rating API (for Senders)

Figure 5.1 gives an example of how the rating API can help applications choose

paths. Suppose a sender wants to choose a path to transfer files from node S to

node D at a speed of 5Mbps. The sender uses the rating API to ask NPAS to rate

paths h-i-j-k-m and n-o-p-q-r. The sender also informs NPAS that the bandwidth

requirement is 5Mbps. NPAS then tries to evaluate path h-i-j-k-m and path n-o-p-q-r.

NPAS only knows partial information about the paths. In particular, NPAS knows

that the bandwidth of link h is 7Mbps and the bandwidth of link m is 3Mbps. NPAS

does not know the bandwidth between node A and node B. However, NPAS can

make a conclusion that path h-i-j-k-m does not meet the sender’s requirements since

the link between node B and node D has only 3Mbps bandwidth. When NPAS tries

to evaluate path n-o-p-q-r, it realizes that the bandwidth between node E and node

D has not been measured yet. But NPAS has received feedback from an application

saying that the sending rate over path r-q-p-o can reach 6Mbps. Based on the feedback

and the measured bandwidth of link n, NPAS concludes that path n-o-p-q-r meets

the sender’s requirements. To tell the sender how good a path is, NPAS needs to

49

calculate a rating score for both path h-i-j-k-m and path n-o-p-q-r. In this particular

example, NPAS uses the following equation to calculate the rating score:

rating = (EstimatedBandwidth− RequestedBandwidth)/RequestedBandwidth.

This type of rating tells the sender that the estimated “head room” bandwidth

of a path (i.e., Estimated - Requested) is a percent more/less than the requested

bandwidth. Clearly one would like the extra “head room” (above the requested

bandwidth) to be 0 or greater. Suppose NPAS uses the minimum bandwidth it

knows about a path as the estimated bandwidth of that path. As a result, path

n-o-p-q-r gets a rating score of 6−5

5
and path h-i-j-k-m gets a rating score of 3−5

5
. A

negative rating score means a path does not satisfy the application’s requirements.

The calculation of the rating score for path h-i-j-k-m does not take the bandwidth

between node A and node B into account, and NPAS does not need to evaluate the

path between node A and node B, because NPAS knows that path h-i-j-k-m does

not satisfy the application’s requirements. The rating of a path is calculated based

on the current knowledge NPAS has about that path, which means that the rating

will change as NPAS gets more up-to-date path information.

Note that receivers can also use the rating API. In particular, a receiver can ask

NPAS to place constraints on incoming paths to the receiver. In other words, the

rating API (for receivers) allows receivers to influence the paths that senders will take

to reach them. For example, if a receiver has multiple interfaces, it may request that

paths that come in over its primary interface be rated higher than paths that come

in over the secondary interface when paths to primary interfaces are not congested.

When NPAS gives path advice to the sender, the constraints from the receiver will

be considered. To prevent spoofing of receivers, NPAS must verify the identity of the

requester. This entails a client talking directly to the NPAS local request Server using

an authentication protocol to prove the client has the right to define path preferences

for itself. The path preferences are forwarded to the shared NPAS server by the NPAS

50

local request server and then can be distributed to other NPAS local request servers.

In general, the rating API (for receivers) will be used to support servers that want to

control their incoming traffic. The second form of the rating API (the rating API for

receivers) that allows receivers to place constraints on paths is described as follows:

• Input: Incoming-Path, list of constraints

• Output: an error code

App A

App B

Server

Node Link

Incoming Path

a
d

b

f

e
gc

Figure 5.2: Using the Rating API (for Receivers)

With the second form of rating API, the receiver can specify constraints on an

incoming path. The Incoming-Path in the API is a contiguous path that ends at the

receiver. For example, in Figure 5.2, path d-f, path f , and path g are all incoming

paths for the server. The constraint contains a type, a match and an action. The type

of constraint can be bandwidth, flow, etc. Each type of constraint has its own way

to specify the match where the match defines what conditions must be true for this

constraint to be met (e.g., bandwidth greater than some value, flow matching some

source/destination pair, etc). The action specifies whether the receiver accepts or

rejects the traffic on the incoming path. The returned error code indicates whether

51

the constraints are accepted by NPAS. If the type is bandwidth, the match can be

specified as the minimum amount of available bandwidth on the incoming link for the

receiver to accept traffic coming from certain paths. For example, in Figure 5.2, the

server can specify path d-f as the incoming path, bandwidth as the type, “minimum

5Mbps available bandwidth on link f” as the match, and “accept” as the action. This

constraint tells NPAS that the server wants to accept traffic from paths that contain

path d-f only if the available bandwidth on link f is greater than or equal to 5Mbps.

Application A can use path a-d-f or path c-e-g to reach the server. However, if the

available bandwidth on link f falls below 5Mbps, NPAS will recommend the path

c-e-g to application A because of the constraint on path d-f. Application B can still

use path b-f to reach the server since it does not use the incoming path d-f. If type of

constraint is flow, the match contains information (e.g., port number, source address,

destination address, etc.) to identify the flow. For example, the receiver can specify

the port number 443 to identify “https” flows, and accept/reject “https” flows on

different incoming paths. NAPS services can define their own supported constraints.

In addition to ranking paths, the rating API can also provide applications with

detailed path and link information. Applications may not need NPAS to rank paths

for them. With the detailed path and link information, an application can make its

own decision about which path is best for the application. Suppose P1 is a path or a

link, T is the type of network metrics (e.g., bandwidth), V is the value of a network

metric, TS is a time stamp, and P2 represents a link (or a path) whose information

is returned. The format of the third form of the rating API (the rating API for path

and link information) is described as follows:

• Input: P1, T

• Output: [V , TS] or a list of [P2, V , T , TS]

52

Using the third form of the rating API, an application can get the actual value

V of a specific network metric T that is collected at the timestamp TS. P1 can be a

path that contains only a single link or multiple links. If P1 contains multiple links,

NPAS would return the link information it has for each link P2 on the path P1 as

well as the information it has for the entire path. If the application does not specify

the network metric T in the input, NPAS will return all the possible types of T (e.g.,

bandwidth, latency, jitter, loss rate, etc.). If information about multiple links (and/or

multiple metrics) is returned, the output is specified as a list of P2, V , T and TS.

5.2 The Scheduling API

Some applications may want to use several paths at the same time. In this case, the

scheduling API is used to help an application spread its traffic over multiple paths.

The format of the scheduling API is described as follows:

• Input: PS1, Type, Req

• Output: PS2, SS2

In the scheduling API, an application provides the set of paths PS1 it can use, the

type of scheduling, and Req (the requirements of using these paths). NPAS supports

two types of scheduling: “packet scheduling” and “flow scheduling”. For “packet

scheduling”, Req contains the maximum number of paths that the application wants

to use, the total throughput that the application wants to achieve, and may also

contains information such as the maximum latency that the application allows. For

“flow scheduling”, Req contains the maximum number of paths that the application

wants to use, the number of flows to send, and QoS requirements (the same QoS

requirements as mentioned in the rating API) of each flow. The output contains

the set of paths (PS2) that are picked by NPAS, and the scheduling (SS2) of traffic

over the chosen paths. The scheduling SS2 contains the desired sending rate on each

53

path in path set S2 for “packet scheduling”. For example, if an application provides

5 possible paths and wants to send 10Mbps traffic over 2 paths, the scheduling API

may tell the application to send 3Mbps traffic on path 2, and 7Mbps traffic on path 3.

For “flow scheduling”, SS2 contains a list of paths picked by NPAS, and each path is

assigned one or more flows. For example, if an application provides 5 possible paths

and wants to send 2 traffic flows with bandwidth requirements 3Mbps and 5Mbps

respectively using 2 paths, the scheduling API may tell the application to send flow

1 on path 5, and flow 2 on path 1.

5.3 The Feedback API

The feedback API enables the application’s ability to upload feedback. Feedback is

important since it can be used by NPAS to give path advice when it is impossible

to monitor the path directly or when the information obtained by monitoring links

is not a good predictor of overall path performance. If all applications could be

trusted to provide correct and reliable feedback, it would make sense to make the

feedback interface available to all applications. However, we cannot assume that

feedback is trustworthy. Without access controls, feedback can be misleading or

lied about. Consequently, access to the feedback mechanism will be limited to nodes

whose trustworthiness can be verified 1. Therefore, to provide feedback, an application

must provide its credentials along with the information about the path – including

the time the path is evaluated by application. The path evaluation time helps NPAS

determine whether the feedback is outdated, and the certificate can be used to verify

the application.

Through the feedback API, an application can provide path measurement (V)

for a specific type of metric (T), the time (TS) when the path is measured, and its

certificate (Cert). In addition to the path statistics, an application can also inform

1In the future we would like to remove this constraint and instead use reputation-based systems
or similar approaches to determine trustworthiness.

54

NPAS of its final choice (Choice) of routing paths after the path advice (Advice) was

provided by NPAS. The feedback API is described as follows:

• Input: P , T , V , TS, Cert, [Choice, [Advice]],

• Output: a status code indicating whether the feedback is accepted by NPAS.

E

F

Network Node End Node

L

M

I

N

O

H

A B

DK

p
q r

s

t

v

Link

Figure 5.3: Using the Feedback API

Feedback can be rejected by NPAS due to various reasons, such as NPAS cannot

verify an application using the application’s certificate, the feedback is outdated, or

the feedback is no longer needed by NPAS. The feedback API helps NPAS collect

additional path information without taking additional measurements. Using the

feedback API, an application can share its path statistics with NPAS, and make

those statistics visible to other applications. For example, as shown in Figure 5.3,

suppose a VoIP application making a voice call from node A to node D wants to

provide feedback to NPAS. The VoIP application specifies the path it used is p-q-r-

s-t (indicated by the blue dotted line) as the input to the feedback API. The VoIP

application also sets the bandwidth metric (T) to 2Mbps (V). Having that feedback

and information about link v, NPAS is able to rate path v-r-s-t for another VoIP

application which wants to make a voice call from node B to node D.

In addition, the choice of routing paths that applications provided in the feedback

can help NPAS recommend a path chosen by an application to another application

55

with similar requirements when NPAS does not collect sufficient measurement

information to evaluate the path. The choice of routing paths can also tell NPAS

how good the advice is. If the highest ranked path is not the path chosen by the

application, it may imply that NPAS’s advice is inaccurate, and thereby NPAS may

need to collect the information on the related path more frequently. In short, the

feedback can be used by NPAS in various ways to improve the quality of the NPAS

service.

56

Chapter 6

Covering Paths

NPAS’s goal is to be able to provide path recommendations to applications for the

paths they are currently interested in. At any given time, applications are only

interested in a subset of all possible paths in the Internet. Consequently, there is

no need for NPAS to monitor paths that are not of interest to applications. In that

sense, NPAS only needs to monitor enough of the Internet’s links to “cover” (i.e.,

answer) the path requests it is receiving from applications.

To help us understand what types of path requests NPAS is likely to received,

we analyzed existing network traffic traces to find out what sources and destinations

were communicating. Given traffic traces along with a topology, we can compute the

set of paths that a routing service would give to an application (which would, in turn,

be given to NPAS to rank). Ideally, a monitoring system will want to monitor paths

that many applications use, and leave paths which are used only by a small number

of applications unmonitored or infrequently monitored to reduce the measurement

overhead. However, applications that are in different locations (e.g., different ASes)

tend to share only a part of path instead of the whole end-to-end path. Consequently,

a shared monitoring system should only monitor shared links of a path, and let local

monitoring systems monitor local links of paths. Both the shared monitor system

and the local monitor system can work together to bring a more complete view of

the end-to-end path information to applications. Individual ASes can have their own

57

monitoring mechanisms to help applications pick Intra-domain paths. Since paths

often span multiple ISPs and ASes, NPAS focuses on the AS level topology and the

AS level link/path.

To gain an understanding of how many links and nodes must be monitored to

“cover” the typical network load generated by applications, we analyze a real-world

traffic trace collected at the University of Kentucky (UKY). The trace shows the

types of requests that NPAS can expect to receive from applications. Each record in

the trace together with information about the Internet topology can be converted to

a set of paths that represent a path request sent to NPAS.

6.1 Coverage Metrics

To measure how well a set of monitored links “cover” the set of path requests coming

from applications, we need to define a set of “coverage metrics”. First, we define a

path hit ratio (Ph) to measure the percentage of paths that are “covered” in their

entirety (i.e., all links along the path are being monitored). The path hit ratio is

calculated as:

Ph =

∑
f∈fset pf

|fset|
(6.1)

where fset is the set of all traffic flows, pf is either 0 or 1, indicating whether all the

links along the paths being considered for use by flow f are being monitored, and

|fset| represents the number of flows. In short, the path hit ratio is the percentage of

path requests (out of all path requests) where NPAS has complete information about

the paths.

Second, we define the link hit ratio as the percentage of paths for which NPAS

has collected information about some portion of the path. In other words, NPAS has

partial information about a path – which could still be helpful to applications even

58

though it is incomplete information. We define the link hit ratio (Lh) as

Lh =

∑
f∈fset cnf

∑
f∈fset tnf

(6.2)

where fset is the set of all traffic flows, cnf is the number of links that are monitored

and are in the paths that flow f could use, and tnf is the total number of links in the

paths that flow f could use. The link hit ratio Lh indicates the average percentage

of information a monitoring system can provide about a path when only a portion of

the links are monitored.

Since both link hit ratio and path hit ratio indicate how much information NPAS

can provide about a path, both link hit ratio and path hit ratio are used to measure

the coverage that occurs when a particular set of links are selected as monitoring

points.

6.2 What Paths Will Applications Request?

To compute path and link hit ratios, we need to understand the types of paths

that NPAS will be asked for along with the frequency that those paths will be

requested. In other words, we need to know something about the flows generated

by end systems (i.e., their source, destination, and frequency). Given information

about the destinations that applications in a particular domain (i.e., source AS) are

trying to reach, the number of links needed to “cover” the majority of the paths to

those destinations can be determined.

Using the UKY trace data described earlier, all the destinations in the trace and

the number of flows destined to each of the destinations can be identified. The traffic

trace consisted of NetFlow [29] records anonymized to protect user privacy. The

trace contained approximately 200 million flows targeted at 10.4 million different IP

addresses contained in 26,578 different ASes.

Destination ASes are sorted in descending order according to the number of flows

whose destination IP addresses belong to the AS. Figure 6.1 describes the percentage

59

0 %

20 %

40 %

60 %

80 %

100 %

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

%
F

lo
w

s
#ASes

%Flows Covered by Top Destination ASes

Figure 6.1: The Percentage of Flows that are Covered by Top Destination ASes

of flows that go to the top ASes. Despite the large number of destinations, we can see

from Figure 6.1 that almost half of the flows were destined to the top 100 (“popular”)

ASes. Roughly 80% of the flows were destined to just 500 ASes, while about 90% of

the flows were destined to the top 1000 ASes. This means that a large portion of the

flow requests to NPAS (from a single AS) could be covered (handled) by monitoring a

small subset of all paths in the Internet. Although an AS may send packets to a large

number of ASes, monitoring paths to the top 500 “popular” ASes will help handle

path requests for 80% of flows. Moreover, paths to unpopular ASes may share links

with paths to the top 500 popular ASes. Consequently, monitoring paths to the top

500 popular ASes can also provide partial path information to applications destined

for unpopular ASes.

Our study only looked at destinations originating from the University of Kentucky.

However, NPAS needs to be able to respond to queries from any AS. If NPAS must

monitor all paths from every source domain in the Internet to that domain’s top 500

popular ASes, the number of paths to be monitored would explode. On the other

hand, if many of the paths/links are shared across different source domains (i.e., two

or more ASes use the same Internet links to reach their most popular destinations),

then it may be possible to answer queries from multiple domains by only monitoring

a small number of paths/links.

60

To emulate traffic originating from multiple ASes, we again use the UKY flow

trace. Although the same set of destinations is used, the flows are re-originated from

a variety of different ASes (i.e., not UKY). In other words, the UKY AS in the flow

trace is replaced with other ASes including MIT, Columbia, Purdue, Utah, UCB, and

FSU. This set of source ASes is later expanded to include ASes all across the world.

We use the UKY trace from these other domains, because the UKY trace is believed

to be representative of many other institutions’ traffic patterns. The UKY trace, like

most other academic institutions’ traffic, is dominated by accesses to widely popular

destinations such as Google, Facebook [81], NetFlix [82], and YouTube [83]. Although

the specific flow distribution may differ slightly, the same set of destinations are also

widely popular at other institutions, and tend to dominate their accesses as well.

6.3 How Many Links Should NPAS Monitor?

To determine how many links NPAS needs to monitor in order to achieve a high

path/link hit ratio, we used the traffic loads from the ASes described above to generate

path requests to NPAS and then measured the path/link hit ratios that result from

monitoring an increasing number of the most popular links.

6.3.1 Single-Source Monitoring

We began by picking the University of Kentucky AS (UKY AS) as an example AS

for our single source monitoring analysis. The number of links in the paths to the top

ASes from UKY grows approximately linearly with the number of ASes included in

the “top” group. The paths to the top 500 ASes contain about 600 links. As shown

below, monitoring 600 links can cover a relatively high percentage of flows (e.g., about

80% flows) for a single AS.

Figure 6.2 shows how the link hit ratio grows with the number of links being

monitored. Any given link may be used by multiple flows. In this case, links that are

61

0 %

20 %

40 %

60 %

80 %

100 %

 0 200 400 600 800 1000 1200

Li
nk

 H
it

R
at

io
#Links

Link Hit Ratio by Monitoring Links for UKY AS

Figure 6.2: The Link Hit Ratio vs the Number of Links Monitored for UKY

part of paths to top ASes are monitored since these links may have potential to be

used by more flows than the links in the paths to unpopular ASes. In Figure 6.2, the

number of ASes that applications want NPAS to be able to answer questions about

is increased, which in turn increase the number of links that must be monitored to

ensure a high link hit ratio. From Figure 6.2, we can see that a link hit ratio of more

than 60% can be achieved by monitoring as few as 100 links, and the link hit ratio

reaches around 90% by monitoring approximately 600 links.

6.3.2 Identifying Popular Links for Multiple Sources

A link hit ratio of around 90% can be reached for the UKY AS when about 600

links are monitored. However, NPAS needs to be able to respond to queries from any

source AS.

Having identified the popular destinations, any link on a path leading from a

source AS to any of the popular destination ASes (e.g., the top 500 popular ASes)

becomes a candidate link to be monitored. To maximize path coverage while at the

same time minimizing the number of links to be monitored – links needs to be picked

according to their contribution to the link hit ratio and/or the path hit ratio.

We defined a single score that combines both ratios into a single metric. In

particular, LRl and PRl are used to identify a link l’s contribution to the overall

62

link hit ratio and the overall path hit ratio respectively. LRl and PRl of a link l are

calculated using equation 6.3, where NFT is the total number of popular flows (i.e.,

flows destined for popular ASes), NFl is the number of popular flows that involve

link l (i.e., the number of flows destined for popular ASes that use link l), and NPl

is the number of popular flows whose paths will be completely monitored if the link

l is added to the current set of links being monitored.

LRl =
NFl

NFT

and PRl =
NPl

NFT

(6.3)

Note that NPl depends on the current set of links being monitored. Even if a path

has all but one of its links in the set of links being monitored, the NPl value for all

links included so far will be zero until the last missing link is added. In other words,

as more links are added to the set of links being monitored, more and more links will

suddenly find themselves contributing to the path hit ratio (i.e., their PRl value will

increase by adding other links to the monitored set). Consequently, when deciding

to add a link to the monitored set or not, we introduce a third factor, FPRl, that

indicates a link’s “potential” to contribute in the future. A node’s future path hit

ratio contribution, FPRl, is based on the number of paths that l has the potential

to help (should all the other links along those paths be selected). Specifically FPRl

is computed using equation 6.4, where NPathT is the total number of paths that

are used by flows destined for popular ASes, and NPathl is the number of paths in

NPathT that link l is a part of.

FPRl =
NPathl

NPathT

(6.4)

A link score (LS) can now be computed using equation 6.5.

LS = αFPRl + βLRl + γPRl (6.5)

The link score LS is a weighted average, where α, β, and γ are weights for these

three factors. Being able to answer queries about entire paths is very important, so

63

we want to monitor links that will contribute to a complete path the most quickly.

Thus we give the most weight to α. We give more weight to α than to γ because

high γ can lead to suboptimal results since PRl is calculated based on the current

set of links being monitored. In addition, we want to give a heavier weight to β than

γ in order to pick links that are used by many flows. Given these goals along with

simulations we performed to evaluate the parameter space, we ended up selecting

values of α = 0.8, β = 0.15, and γ = 0.05 as values that resulted in the best link and

path hit ratios.

Using the trace data and the topology graph from CAIDA [84] as input, our

algorithm to pick shared links to monitor is shown below:

1. Calculate LS scores of all candidate links.

2. Update PRl as links are added to the set of links to be monitored.

3. Update LS scores of candidate links that are affected by changing PRl.

4. Pick the link with the highest LS score to monitor, and move the link from the

candidate link set to the “to be monitored” link set.

5. Repeat: goto step 2 until the number of links picked reaches the predetermined

limit or no more candidate links are left.

6.3.3 Global (Shared) Monitoring

Using the previously described algorithm to select (beneficial) links to monitor, the

link hit ratio that various ASes would experience can then be computed. In Figure 6.3,

we pick 7 University ASes that are geographically apart from each other in the United

State as our representative ASes to evaluate whether our strategically picked links can

achieve a high link hit ratio for traffic originating from different locations. The links to

be monitored are picked globally based on all source ASes (not just the representative

ASes) in the topology. We assume all source ASes have a traffic pattern similar to

64

0 %

20 %

40 %

60 %

80 %

100 %

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Li
nk

 H
it

R
at

io
#Links

The Link Hit Ratio

UKY
MIT

UCB
Columbia

Purdue
Utah
FSU

Figure 6.3: The Link Hit Ratio by Monitoring Top Globally Shared Links

the UKY AS in this experiment. We can see from Figure 6.3, the link hit ratio grows

with the number of links being monitored. By monitoring 5000 important links, we

can achieve an 80% to 95% link hit ratio for the traffic flows originating from 6 out

of 7 ASes. However, monitoring the same set of 5000 links results in a relatively low

link hit ratio for the Florida State University (FSU) AS, because some heavily used

local links coming out of the FSU AS are only shared by a few ASes and thus are

not monitored globally. However, as we will see in Section 6.3.4, if there are local

monitoring systems that can monitor links which are not monitored by the shared

monitoring system, but yet are heavily used by a specific AS, the link hit ratio can

be improved for that AS.

0 %

20 %

40 %

60 %

80 %

100 %

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
at

h
H

it
R

at
io

#Links

The Path Hit Ratio

UKY
MIT

UCB
Columbia

Purdue
Utah
FSU

Figure 6.4: The Path Hit Ratio by Monitoring Top Globally Shared Links

65

Figure 6.4 shows how the path hit ratio grows with the number of globally

monitored important links. The same set of representative ASes that was used in

Figure 6.3 are evaluated in Figure 6.4. We can see that when 5000 shared links

are monitored, about 75% to 85% of the paths originating from UKY, MIT, UCB,

Columbia and Utah are completely covered by those links. The FSU AS has a path hit

ratio of 0% since key local links are not being monitored. Although monitoring 5000

shared links globally can provide end-to-end path information for a high percentage

of traffic for some ASes (e.g., the Columbia AS), local links may need to be monitored

to provide end-to-end path information for traffic originating from certain ASes (e.g.,

the FSU AS).

6.3.4 Local (Private) Monitoring

Since the shared monitoring system may not want to monitor links that are only used

by traffic originating from a specific AS, a local monitoring system can be deployed

for each AS to monitor local links that are directly attached to the AS. The local

monitoring system only needs to monitor local links that are on the paths to popular

ASes (e.g., the top 500 ASes) and are not being monitored globally. The local link

information is kept locally, and the NPAS local request server provides path advice

to local applications using both the shared link information distributed by the shared

NPAS server and local link information from the local AS.

Figure 6.5 and Figure 6.6 show that incorporating local monitor system informa-

tion greatly improves both the link hit ratio and path hit ratio. In the experiment,

when NPAS monitors 5000 shared links, the local monitoring system only needs to

monitor 1 local link for FSU and UCB, 3 local links for MIT, and no local link for

other representative ASes. If we compare Figure 6.5 with Figure 6.3 and Figure 6.6

with Figure 6.4, we can see that monitoring a few local links helps improve both the

link hit ratio and the path hit ratio, especially for the FSU AS which went from 0%

66

0 %

20 %

40 %

60 %

80 %

100 %

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Li
nk

 H
it

R
at

io
#Links

The Link Hit Ratio (With Local Monitor)

UKY
MIT

UCB
Columbia

Purdue
Utah
FSU

Figure 6.5: The Link Hit Ratio with Local Monitor

0 %

20 %

40 %

60 %

80 %

100 %

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
at

h
H

it
R

at
io

#Links

The Path Hit Ratio (With Local Monitor)

UKY
MIT

UCB
Columbia

Purdue
Utah
FSU

Figure 6.6: The Path Hit Ratio with Local Monitor

to 80% for the path hit ratio. We can see that by monitoring 5000 shared links and

a few local links, the monitoring system is capable of providing applications with

around 90% link information and around 60% to 85% path information for these

representative ASes.

6.3.5 Multi-source Multi-route Monitoring

In the future Internet, applications will have the ability to choose among multiple

routing paths. To evaluate whether our strategically picked links can still provide

a high link/path hit ratio in a network that supports multiple routing paths, five

paths are picked from each representative AS to each possible destination AS. These

67

five paths are picked based on shortest path criteria, but they are distinct (i.e., non-

overlapping) from each other.

0 %

20 %

40 %

60 %

80 %

100 %

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Li
nk

 H
it

R
at

io

#Links

The Link Hit Ratio (Multiple Paths With Local Monitor)

UKY
MIT

UCB
Columbia

Purdue
Utah
FSU

Figure 6.7: The Link Hit Ratio with Local Monitor and Multiple Paths

Figure 6.7 shows the link hit ratio for representative ASes when five possible

paths can be used by applications. We can see that the link hit ratio for five possible

routing paths is only slightly lower than the link hit ratio for a single routing path, and

monitoring 5000 links can still provide a high link hit ratio for five possible routing

paths.

0 %

20 %

40 %

60 %

80 %

100 %

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
at

h
H

it
R

at
io

#Links

The 2-Path Hit Ratio (Multiple Paths With Local Monitor)

UKY
MIT

UCB
Columbia

Purdue
Utah
FSU

Figure 6.8: The 2-Path Hit Ratio with Local Monitor and Multiple Paths

Figure 6.8 shows the path hit ratio when 2 or more paths are covered by the links

being monitored. More specifically, a flow (request) is considered to contribute to

the 2-path hit ratio when at least 2 possible paths (out of 5 paths) are completely

68

0 %

20 %

40 %

60 %

80 %

100 %

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
at

h
H

it
R

at
io

#Links

The 3-Path Hit Ratio (Multiple Paths With Local Monitor)

UKY
MIT

UCB
Columbia

Purdue
Utah
FSU

Figure 6.9: The 3-Path Hit Ratio with Local Monitor and Multiple Paths

monitored by NPAS. Figure 6.9 shows the path hit ratio when 3 or more paths are

monitored. From Figure 6.8 and Figure 6.9, we know that monitoring 5000 links and

a few local links can still provide approximately a 75% path hit ratio for 2 and 3

paths, which implies that around 75% traffic can get end-to-end path information for

at least 2 to 3 paths. In this example, one AS (the Purdue AS) has a below average

3-path hit ratio because some of links that are used by the AS are not popular enough

to be monitored globally. However, the Purdue AS has a high link hit ratio, which

means that applications can still get partial path information for paths that are not

completely covered by links being monitored.

6.3.6 Future Traffic Monitoring

We expect that top ASes and candidate shared links do not change frequently, and

links that are chosen based on historical traffic can still have good path/link coverage

for future traffic. To prove our expectation, the UKY traffic trace is split into two

parts: each part presents traffic traces for half of a day. The data of the first half day

is used to find the top ASes and links to be monitored, and the data of the second

half day is used to find out how future flows will be covered by the links picked based

on the historical data.

69

0 %

20 %

40 %

60 %

80 %

100 %

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Li
nk

 H
it

R
at

io
#Links

The Link Hit Ratio(Multiple Paths With Local Monitor) for Future Traffic

UKY
MIT

UCB
Columbia

Purdue
Utah
FSU

Figure 6.10: The Link Hit Ratio for Future Traffic with Local Monitor

Figure 6.10 shows the link hit ratio of the flows in the second half day when the

links to be monitored are calculated based on the flows in the first half day. By

comparing Figure 6.10 and Figure 6.7 , we know that when the links being monitored

are chosen based on the previous 12 hours’ traffic, the overall link hit ratio is still close

to the link hit ratio by monitoring links that are chosen based on the current traffic.

Therefore, our method of picking links to monitor based on recent traffic works for

the real world traffic. However, an unpopular AS may become popular over time.

In Section 7.1, we talks about how NPAS can keep track of ASes that have recently

become popular.

6.3.7 Monitoring for International ASes

Even though our strategically picked links lead to high link and path hit ratio for

representative ASes, these ASes are all located in the United States. To prove that

monitoring our strategically picked links also provides a good link/path hit ratio for

ASes outside the United States, we pick a second set of representative University

ASes, including Tsinghua AS (Tsinghua University in China), Oxford AS (University

of Oxford in UK), USP AS (University of Sao Paulo in Brazil), MSU AS (Moscow

State University in Russia), UniMelb AS (University of Melbourne in Australia), and

UCT AS (University of Cape Town in South Africa).

70

0 %

20 %

40 %

60 %

80 %

100 %

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Li
nk

 H
it

R
at

io
#Links

The Link Hit Ratio (With Local Monitor)

Tsinghua(CN)
Oxford(UK)

USP(BR)
MSU(RU)

UniMelb(AU)
UCT(ZA)

Figure 6.11: The Link Hit Ratio with Local Monitor for International ASes

0 %

20 %

40 %

60 %

80 %

100 %

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
at

h
H

it
R

at
io

#Links

The Path Hit Ratio (With Local Monitor)

Tsinghua(CN)
Oxford(UK)

USP(BR)
MSU(RU)

UniMelb(AU)
UCT(ZA)

Figure 6.12: The Path Hit Ratio with Local Monitor for International ASes

Figure 6.11 and Figure 6.12 show the link hit ratio and path hit ratio by monitoring

the same set of strategically picked links for the second set of ASes. We can see from

the figures that by monitoring 5000 links, the link hit ratio for the second set of

ASes reaches around 80% to 90%, and the path hit ratio varied from 60% to 85%.

Compared to the representative ASes within the United States, the second set of ASes

achieve similar link hit ratios and a slightly lower path hit ratios.

Links to be monitored are not strategically picked based on special ASes, rather

links are picked based on how links are shared for all ASes. Therefore, monitoring

the same set of 5000 links can also achieve a good path hit ratio for ASes outside the

US.

71

0 %

20 %

40 %

60 %

80 %

100 %

 0 1000 2000 3000 4000 5000

H
it

R
at

io
#Links

The Average Link/Path Hit Ratio for All ASes (With Local Monitor)

Average Link Hit Ratio
Average Path Hit Ratio

Figure 6.13: The Average AS Link/Path Hit Statistics with Local Monitor

Figure 6.13 shows the average link/path hit ratio of all ASes (around 40000 ASes

in the sample AS topology) as the number of links monitored increases. To learn the

overall link/path hit ratio for all ASes in the AS topology, we calculate the link/path

hit ratio for each AS by monitoring a certain number of links, and then calculate

the average link/path hit ratio of all ASes. As shown in Figure 6.13, we can achieve

an average link hit ratio of 91% and an average path hit ratio of 76% for all ASes

by only monitoring 5000 links globally with local monitor applied to fill in missing

information.

0 %

20 %

40 %

60 %

80 %

100 %

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Li
nk

 H
it

R
at

io

#Links

The Link Hit Ratio (Multiple Paths With Local Monitor)

Tsinghua(CN)
Oxford(UK)

USP(BR)
MSU(RU)

UniMelb(AU)
UCT(ZA)

Figure 6.14: The Link Hit Ratio with Local Monitor and Multiple Paths for
International ASes

Figure 6.14 and Figure 6.15 show the link hit ratio and 2-path hit ratio when 5

possible paths are used for each source and destination pair. From Figure 6.14 and

72

0 %

20 %

40 %

60 %

80 %

100 %

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
at

h
H

it
R

at
io

#Links

The 2-Path Hit Ratio (Multiple Paths With Local Monitor)

Tsinghua(CN)
Oxford(UK)

USP(BR)
MSU(RU)

UniMelb(AU)
UCT(ZA)

Figure 6.15: The 2-Path Hit Ratio with Local Monitor and Multiple Paths for
International ASes

Figure 6.15, we know that these international ASes still achieve around 75% to 85%

link hit ratios and around 70% to 85% 2-path hit ratios.

In short, we are able to identify a small number of links to monitor to achieve a

high link/path hit ratio. Monitoring our strategically picked links has the potential

to help the majority of traffic across the Internet choose routing paths.

6.3.8 Monitoring for Multiple Traffic Patterns

Assuming that traffic from all source ASes has the same destination distribution

pattern as the traffic from UKY ASes may not provide accurate simulation for traffic

originated from non-university ASes. To demonstrate that our method for picking

monitoring links will also lead to high path coverage when ASes exhibit different traffic

patterns than university traffic patterns, we classify ASes into categories and assigned

distinct traffic distribution patterns. Based on the AS registration information, we

separate ASes into university ASes, corporation ASes, government ASes, ISP ASes,

and unclassified ASes.

According to the global Internet phenomena report [85], several popular services

(e.g., Netflix [82], Youtube [83], Facebook [81] etc.) – which we will call streaming and

social media services – are responsible for more than 50% of the Internet traffic. Based

73

on distinct usage patterns for users from various types of ASes, we vary the traffic

distribution to these popular services for different ASes. For example, the percentage

in the traffic report [85] (e.g., Netflix(30%), Youtube(17%), Facebook(4%), Google

Play(3%), iTunes(2%), etc.) can be used as the traffic distribution to streaming and

social media services for the unclassified ASes. Based on our recent study of UKY

traffic, traffic to a popular service like Netflix can account for more than 50% of the

UKY traffic. Therefore, for the university ASes, we increase the percentage of traffic

(e.g., a total of 65%) to streaming and social media services. For government ASes

and corporation ASes, we expect they have a much lower percentage of traffic that

goes to sites like Netflix, and so we reduce the percentage of traffic (e.g., a total of

20%) to streaming and social media services. Since personal Internet use at home is

mostly for entertainment purpose and personal traffic is carried through the ISP ASes

(i.e., Cable Company ASes), we expect the ISP ASes may have a higher percentage

of traffic (e.g., 75%) to streaming and social media services. For traffic designated at

unpopular services, the UKY traffic distribution is used.

Table 6.1: Traffic to Streaming and Social Media Services
Source AS Streaming and Social Media Services
University 65%

Corporation 20%
Government 20%

ISP 75%
Unclassified 59%

With distinct traffic distribution patterns to streaming and social Media Services

for various ASes as described in Table 6.1, we reran our algorithm to pick links to be

monitored and evaluate the path/link hit ratio for different ASes. Figure 6.16 shows

the average link/path hit ratio for all ASes in our AS topology. The links are picked

to be monitored based on traffic from all source ASes. The link/path hit ratio of an

AS is calculated based on the AS’s traffic distribution. We can see from Figure 6.16

74

0 %

20 %

40 %

60 %

80 %

100 %

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

H
it

R
at

io
#Links

The Average Link/Path Hit Ratio for All ASes (With Local Monitor)

Average Link Hit Ratio
Average Path Hit Ratio

Figure 6.16: The AS Link/Path Hit Statistics with Local Monitor and Multiple Traffic
Patterns

that the link hit ratio reaches around 93% and the path hit ratio reaches around 82%

when 5000 links are monitored globally with local monitor.

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000 5000

#C
ov

er
ed

 D
es

tin
at

io
ns

#Links

The Popular Destination Coverage Statistics

Average Number of Covered Destinations

Figure 6.17: The Top 500 ASes Coverage Statistics

Figure 6.17 shows the coverage of the top 500 ASes by monitoring various number

of links. From Figure 6.17, we learn that monitoring 5000 shared links and local links

can cover an average of roughly 440 out of 500 popular destination ASes for all source

ASes. Since most of the popular destinations can be covered, our strategically picked

links can provide a high link/path hit ratio in general despite the fact that distinct

source ASes may have distinct traffic distribution patterns to the popular destination

ASes.

75

6.4 Selecting Monitoring Points

We have learned how to select shared links to monitor that will “cover” a large

percentage of the flows originating from multiple source domains. The next challenge

is to enable monitoring of these links at the ASes to which they are connected.

“Enabling monitoring” does not mean deploying new monitoring tools in the

monitoring points. Rather, it means to request that the corresponding ASes send

measurements of certain links. The monitoring points will typically be controlled by

individual ASes, and ASes can use their existing monitoring infrastructure to collect

path information that NPAS requests.

As shown in the previous section, only 5000 shared links need to be monitored

to “cover” the Internet. Using the AS topology graph, we can see that the top 5000

shared links are attached to roughly 3000 ASes. In this case, NPAS would receive

path requests from which NPAS could extract the 5000 most frequently occurring

links. Given the 5000 links, NPAS would then enable monitoring at the 3000 ASes

that are connected to the ends of each link. Ideally, NPAS can get information from

both sides the link (i.e., the ASes on either side of the link).

While it may be reasonable to collect data from 3000 ASes, it may be unfeasible

or impractical to manage relationships with 3000 ASes (setting up/managing SLAs,

authentication mechanisms, authorization policies, etc). Consequently, there are

reasons to limit the number of ASes NPAS must monitor, even if it means reducing

NPAS’s ability to respond to path requests. Ideally NPAS would like to minimize the

number of ASes it needs to communicate with and yet maximize the number of path

requests that NPAS can provide information about.

In cases where the path metric requested is bandwidth or hop-by-hop round trip

delays (as opposed to one-way delays), it is possible to only monitor one end of a link,

further reducing the number of ASes NPAS needs to interact with. In the following,

we describe how NPAS selects ASes to monitor. We call these ASes Monitoring Points

76

(MPs).

6.4.1 One AS per Link Monitoring

There are around 3000 ASes that the top 5000 shared links are attached to. However,

only a small portion of these ASes need to be monitored in order to cover a majority

of the top 5000 shared links (assuming NPAS only monitors one AS per link). To

achieve maximal coverage but yet limit the number of ASes NPAS needs to interact

with if NPAS only needs to monitor one end of a link, NPAS uses the link score

computation from equation 6.5 to select links to be monitored – and (indirectly) to

select ASes where monitoring is to be enabled. In particular NPAS:

1. Begins by marking all ASes and links as unmonitored.

2. It then calculates the link score of every link using equation 6.5. However, to

emphasize the contribution of the link hit ratio and deemphasize the (highly

varying) path hit ratio, NPAS sets α = 0.1, β = 0.9, and γ = 0. This ensures

that ASes containing links that are heavily used by applications will be picked

first.

3. It then picks an unmonitored AS that will maximize the total link score of all

monitored links, and marks the AS and links that are directly attached to that

AS as being monitored.

4. Repeat the process (going to step 3) until the maximum allowed number of

ASes have been selected.

We use the above algorithm to select one AS per link (noting that some links may

still end up having both ends monitored). In each iteration of the algorithm, we try

to find an AS that contributes most to the link score. The relationship between the

number of top 5000 shared links that can be monitored and the number of ASes that

NPAS chooses to monitor based on the above algorithm is shown in Table 6.2. We

77

Table 6.2: The Top 5000 Link Coverage from Monitoring ASes (One AS per Link)
#Monitoring Points #Links Covered #Links NotCovered

50 4249 751
100 4472 528
150 4633 367
200 4735 265
250 4820 180
300 4872 128
350 4922 78
400 4972 28
428 5000 0

can see from the Table 6.2, the first 50 added ASes can cover 4249 out of 5000 links

and the first 100 added ASes can cover upwards of 4400 links.

Table 6.3: The Link/Path Hit Ratio for Monitoring 50 ASes (One AS per Link)
Without Local Links With Local Links

%Link Hit %Path Hit %Link Hit %Path Hit #Links(#local links)
UKY 92.25% 79.24% 92.99% 80.73% 4249(1)
MIT 91.48% 81.50% 92.18% 81.50% 4249(3)
UCB 92.30% 77.88% 92.58% 77.88% 4249(1)

Columbia 92.82% 82.47% 92.84% 82.47% 4249(0)
Purdue 56.89% 0.00% 86.75% 68.56% 4249(2)
Utah 63.69% 0.00% 91.74% 77.26% 4249(1)
FSU 64.55% 0.00% 93.85% 81.53% 4249(1)

Table 6.4: The Link/Path Hit Ratio for Monitoring 100 ASes (One AS per Link)
Without Local Links With Local Links

%Link Hit %Path Hit %Link Hit %Path Hit #Links(#local links)
UKY 93.88% 83.15% 93.89% 83.15% 4472(0)
MIT 92.49% 83.72% 93.18% 83.81% 4472(3)
UCB 93.28% 80.21% 93.55% 80.21% 4472(1)

Columbia 93.81% 84.88% 93.83% 84.88% 4472(0)
Purdue 82.10% 65.83% 88.72% 70.14% 4472(1)
Utah 92.46% 79.48% 92.46% 79.48% 4472(0)
FSU 65.28% 0.00% 94.58% 83.81% 4472(1)

Table 6.3 shows that the link hit ratio and the path hit ratio (using the UKY

traffic distribution pattern) for traffic originating from some source ASes when 50

ASes are monitored. Seven university ASes that are geographically located apart

78

from each other in the United States are used as our first set of example ASes. We

can see that example ASes in the table can exceed a link hit ratio of 85% and exceed

a path hit ratio of 68% by also monitoring local links. When 100 ASes are monitored,

the link hit ratio can reach 90% and the path hit ratio can reach above 70% for these

example ASes (shown in Table 6.4). In short, if NPAS only needs to monitor one AS

per link, NPAS can provide link/path information for the majority of Internet traffic

by monitoring 50 to 100 ASes.

6.4.2 Two ASes per Link Monitoring

As noted earlier, both sides of a link need to be monitored in order to accurately

measure certain network information (e.g., one-way delay). In such cases, NPAS can

identify ASes/links to be monitored using the following steps:

1. Mark all ASes and links as unmonitored.

2. Calculate the link score of every link using equation 6.5 (using α = 0.1, β = 0.9,

and γ = 0).

3. Pick the first 50 ASes according to the method that is used previously to pick

one AS per link, and mark these 50 ASes as monitored.

4. Calculate the AS score of unmonitored ASes. An AS A’s score is calculated as

the sum of link score of links that connect the current unmonitored AS A and

any other AS that is marked as monitored.

5. Mark the AS with maximum AS score as monitored.

6. Repeat the process (going to step 4) until the maximum allowed number of

ASes have been selected.

7. Order the candidate links according to the algorithm described in Section 6.3.2.

79

8. Based on the link order, mark the link as monitored if both endpoint ASes of

the link are marked as monitored until the maximum allowed number of Links

have been selected or no more such links exist.

Table 6.5: The Link/Path Hit Ratio for Monitoring 300 ASes (Monitoring Both
Endpoints)

Without Local Links With Local Links
%Link Hit %Path Hit %Link Hit %Path Hit #Links(#local links)

UKY 86.31% 66.36% 86.31% 66.36% 3955(0)
MIT 44.90% 0.00% 85.37% 67.93% 3955(6)
UCB 88.51% 67.65% 88.79% 67.65% 3955(1)

Columbia 46.02% 0.00% 85.64% 67.99% 3955(2)
Purdue 52.12% 0.00% 81.98% 53.50% 3955(2)
Utah 32.50% 0.00% 60.56% 0.00% 3955(1)
FSU 59.97% 0.00% 89.27% 67.96% 3955(1)

Table 6.6: The Link/Path Hit Ratio for Monitoring 600 ASes (Monitoring Both
Endpoints)

Without Local Links With Local Links
%Link Hit %Path Hit %Link Hit %Path Hit #Links(#local links)

UKY 91.09% 77.91% 91.09% 77.91% 5000(0)
MIT 90.61% 79.27% 90.66% 79.27% 5000(1)
UCB 92.24% 78.22% 92.52% 78.22% 5000(1)

Columbia 90.85% 79.31% 90.87% 79.31% 5000(0)
Purdue 55.84% 0.00% 85.70% 61.71% 5000(2)
Utah 90.97% 75.32% 90.97% 75.32% 5000(0)
FSU 63.79% 0.00% 93.10% 79.18% 5000(1)

Table 6.5 and 6.6 describe the link hit ratio and the path hit ratio by monitoring

300 ASes and 600 ASes if both sides of a link are monitored. As the number of ASes

being monitored reaches 600, the global monitoring system can achieve about 90%

link hit ratio and 70% path hit ratio for the sample ASes with local monitor. The

maximum number of shared links to be monitored is set to 5000, and the 5000 links

that are monitored in Table 6.6 contain additional candidate links that are ordered

after the 5000th popular links since not all the first 5000 popular links are covered

by these 600 ASes.

80

6.4.3 Monitoring Point Selection for Multi-route Monitoring

We have demonstrated that our proposed method of picking monitoring points can

achieve a high link hit ratio and path hit ratio when a single routing path is used

between a source and destination. If a network supports multiple routing paths,

learning the path conditions about all possible paths is important to help applications

decide the final routing paths. In the following, we study the link and path hit ratio

for our strategically picked monitoring points in a network where the routing service

provides five possible paths to applications. Table 6.7 shows the link and path hit

ratio when 100 ASes are monitored if only one side of a link needs to be monitored.

We can see that the link hit ratio for all five possible paths (Table 6.7) is only slightly

lower than the link hit ratio for the case of a single routing path (Table 6.4). In

addition, a 70% to 80% 2-path/3-path hit ratio can be achieved.

Table 6.8 shows the link/path hit ratio when 600 ASes are picked if we monitor

both sides of a link. From Table 6.8, we can see that monitoring 600 ASes can still

achieve a high link hit ratio and cover at least 2-3 paths for around 70% to 80% of

the traffic flows from the most representative ASes.

Table 6.7: The Link/Path Hit Ratio for Monitoring 100 ASes with Multiple Paths
(Monitoring One Endpoint)

With Local Links
%Link Hit %1-Path Hit %2-Path Hit %3-Path Hit #Links(#local links)

UKY 88.28% 84.85% 74.54% 70.55% 4472(0)
MIT 86.28% 85.27% 82.76% 77.98% 4472(3)
UCB 87.40% 85.40% 83.08% 75.15% 4472(1)

Columbia 89.85% 85.23% 82.45% 77.06% 4472(0)
Purdue 78.61% 83.00% 73.42% 42.48% 4472(1)
Utah 85.54% 85.26% 82.80% 76.47% 4472(0)
FSU 79.33% 85.44% 80.59% 50.95% 4472(1)

6.4.4 Monitoring Point Selection for International ASes

After the evaluation of the first set of example ASes, we evaluate the link/path hit

ratio for the second set of example ASes that are located outside the United States.

81

Table 6.8: The Link/Path Hit Ratio for Monitoring 600 ASes with Multiple Paths
(Monitoring Both Endpoints)

With Local Links
%Link Hit %1-Path Hit %2-Path Hit %3-Path Hit #Links(#local links)

UKY 88.36% 79.08% 78.29% 77.32% 5000(0)
MIT 88.77% 79.31% 79.29% 78.22% 5000(1)
UCB 88.89% 79.29% 79.14% 78.26% 5000(1)

Columbia 90.53% 79.31% 79.18% 78.28% 5000(0)
Purdue 76.03% 76.79% 48.07% 30.35% 5000(2)
Utah 87.07% 79.31% 79.30% 78.17% 5000(0)
FSU 87.03% 79.33% 78.80% 76.52% 5000(1)

Table 6.9: The Link/Path Hit Ratio for Monitoring 100 ASes with Multiple Paths
(Monitoring One Endpoint)

With Local Links
%Link Hit %1-Path Hit %2-Path Hit %3-Path Hit #Links(#local links)

Tsinghua(CN) 87.63% 85.01% 81.96% 70.97% 4472(1)
Oxford(UK) 86.10% 85.09% 83.41% 74.51% 4472(16)

USP(BR) 81.48% 79.63% 73.96% 55.37% 4472(5)
MSU(RU) 85.84% 84.46% 68.78% 64.55% 4472(6)

UniMelb(AU) 74.93% 84.94% 77.78% 38.09% 4472(1)
UCT(ZA) 81.15% 84.20% 80.29% 64.16% 4472(4)

By monitoring 100 ASes – one AS per link (as shown in Table 6.9) – the link hit

ratio for most example ASes is around 80%, and the 2-path hit ratio for most ASes is

about 70% to 80%. Table 6.10 shows the link/path hit ratio for international ASes if

NPAS monitors both sides of a link. We can see from Table 6.10, most ASes achieve

high link hit ratios and high 2-path/3-path path hit ratios.

Table 6.10: The Link/Path Hit Ratio for Monitoring 600 ASes with Multiple Paths
(Monitoring Both Endpoints)

With Local Links
%Link Hit %1-Path Hit %2-Path Hit %3-Path Hit #Links(#local links)

Tsinghua(CN) 92.43% 79.32% 79.24% 78.38% 5000(1)
Oxford(UK) 88.64% 79.35% 79.29% 79.15% 5000(7)

USP(BR) 83.46% 79.24% 77.76% 69.09% 5000(5)
MSU(RU) 89.18% 79.31% 79.12% 78.17% 5000(6)

UniMelb(AU) 88.18% 79.32% 79.16% 77.97% 5000(1)
UCT(ZA) 87.19% 79.27% 78.45% 76.41% 5000(4)

82

6.5 Network Overhead of Covering Popular Paths

We have shown that NPAS only needs to monitor 5000 popular links and 100 to

600 ASes in order to cover around 75% traffic. Collecting and distributing path

measurements consume network bandwidth. To design a scalable NPAS, the potential

network overhead must be kept at a reasonable level.

A working NPAS system involves the following procedures:

1. The shared NPAS server decides where to place global monitoring points and

collects link measurements from monitoring points.

2. The shared NPAS server distributes link/path measurements to the NPAS local

request server.

3. The NPAS local request server handles applications’ requests.

4. The NPAS local request server sends aggregated path request statistics to the

shared NPAS server.

Each of above steps consumes a certain amount of network bandwidth. First, we

look at the network overhead introduced in step 1. In step 1, the shared NPAS

server would need to collect link measurements from the top 5000 shared links’

monitoring points. Since the monitoring system only needs to monitor at most

5000 links globally, the monitoring system can collect link measurements at the rate

that the monitoring point supports. Even with a 100 times per second collection

rate, collecting link measurements of 5000 links consumes only a small amount of

bandwidth. For example, if a packet of 100 bytes (800 bits) is used to store the

information (e.g., ID, available bandwidth, capacity, loss rate, etc.) of a link and

each link information is sent to the shared NPAS server 100 times per second, the

total amount of bandwidth that is used network-wide to get information from 5000

shared links is around 400 Mbps.

83

In step 2, link measurements are distributed to the NPAS local request servers.

Since the expected usage pattern of NPAS is that applications will request path

advice per flow rather than asking path advice for every packet, the request rate of

link measurements by traffic flows is an important factor to determine the distribution

rate of link measurements. For example, if a link measurement is requested 100 times

every second, the link measurement needs to be updated 100 times per second to

provide applications with “up-to-date” link information.

Ideally, the shared NPAS server distributes the link measurements to the local

NPAS request server at the rate link information is being requested. As a result,

heavily used links get frequent updates while “rarely” used links get less frequent

updates. Based on the usage patterns, the measurement on the same link can be

distributed at a distinct rate to various ASes.

Table 6.11: The Link Measurement Request and Distribution Rate for the Top 5000
Links

Category Num Links Req Rate(times/s) Dis Rate(times/s)
1 25 >100 100
2 25 >50 50
3 150 >10 10
4 1300 >1 1
5 1000 >0.1 0.1
6 500 >0.033 0.033
7 2000 >0.01 0.01

Based on requests extracted from the UKY trace data, if an application’s request

contains only a single path, only 5 links are requested more than 100 times per second

and thereby only 5 out of 5000 links need to be distributed at the rate of 100 times per

second. If all NPAS requests ask for path advice for 5 routing paths, the request rate

(Req Rate) and the corresponding link measurement distribution rate (Dis Rate) are

described in Table 6.11. We can see that only a small number of links (25 links) are

requested by applications more than 100 times per second. Most links are requested

84

less than 10 times per second, and the information of these links can be distributed

at a low distribution rate.

Although each AS gets its own link measurement distribution rates based on the

request rates, only a small number of links are requested at a fast rate (e.g., 100 times

per second). This is because most traffic is targeted at a few popular destinations.

As a result, the link measurement distribution rate for other ASes will likely have

a similar distribution pattern, in which measurements of only a few links need to

be updated at a fast rate (e.g., 10 times per second to 100 times per second) while

measurements of most links only need to be updated at a “normal” rate (e.g., 1

times per second or less than 1 times per second). As a result, link measurements

of frequently used links can be updated frequently to help NPAS local request server

give correct path advice, and infrequently used links can be updated less frequently

to reduce network overhead. In addition, since a type of link metric may be requested

at a different rate than other types of link metrics, each type of link metric can have

its own link measurement distribution rate. Suppose bandwidth and delay are two

of the most important link metrics that all flows requests, and a packet of 8 bytes

(80 bits) is used to store the link index (out of 5000 links), the available bandwidth,

and the delay of the link. Based on the distribution rate described in Table 6.11, the

bandwidth consumption to distribute these two types of link metrics to the NPAS

local request server for UKY AS is around 0.5 Mbps. If all other source ASes have

request rates similar to the UKY AS, the total bandwidth consumption is around

20Gbps (globally) for 40000 ASes, and the total packet distribution rate is around 4

million per second. Since there are multiple (e.g., dozens of) NPAS shared servers,

the global 20Gbps bandwidth consumption can be amortized among all NPAS shared

servers to keep the bandwidth consumption at an acceptable level for a NPAS shared

server.

In step 3, the application’s requests are handled locally by the NPAS local request

85

server. The NPAS local request server makes use of link measurements distributed

by shared NPAS server and information about local links that are collected by the

NPAS local request server to give path advice to applications. As a result, requests

that have been handled locally do not introduce additional global traffic.

In step 4, the NPAS local request server sends path request statistics to the shared

NPAS server. As mentioned earlier, the popular ASes does not change frequently, and

so NPAS does not need to update the monitoring points frequently. Assuming that

NPAS re-selects the monitoring points every 30 minutes, the NPAS local request

server needs to send path request statistics to the shared NPAS server every 30

minutes. The path request statistics of a path include information such as the path

ID that is represented as a list of link IDs, a list of metrics that is requested on the

path, and the number of requests for each metric. If 100 bytes (800 bits) is used

to store the requested statistics of a path and the average number of possible paths

between a source and destination is five, the total bandwidth consumption to collect

request statistics for 40000 ASes is around 3.3 Gbps (40000 ASes * (39999 * 5) Paths

* 800 bits * 1/30 per minute) or 0.32 million packets per second with a packet of size

around 1400 bytes.

In conclude, step 3 does not introduce additional traffic globally, and according

to step 1, 2, and 4, the shared NPAS server consumes around 3.7 Gbps downstream

bandwidth and around 20 Gbps upstream bandwidth, and needs to process around

5 millions packets per second in order to collect and distribute measurement data.

Since a single modern server can easily handle 5 million packets per second of IO

and maintain concurrent socket connections to 40000 ASes, a dozen of shared NPAS

servers distributed across the Internet are sufficient to serve as the core NPAS service

and also help distribute the network overhead by sending measurement data to

NPAS local request servers from multiple locations (e.g., around 2 Gbps bandwidth

consumption per shared NPAS server on average with 12 shared NPAS servers).

86

In general, the network overhead of providing the NPAS service is acceptable.

Deploying dozens of shared NPAS servers can help provide a core NPAS service for a

network that is about size of current Internet.

87

Chapter 7

Collecting Path Information

In the NPAS system, the path requests are collected and aggregated at the NPAS

local request server, and then forwarded to the shared NPAS server. To reduce

measurement overhead, NPAS only monitors some of the paths; paths that are of

interest to the applications. On the other hand, we have shown that NPAS can

monitor a small number of links and nodes while still providing link/path information

for a high percentage of real network traffic. However, the paths that are of interest to

applications change over time. Consequently, NPAS needs to decide how it can update

the set of links and ASes that should be monitored. After the monitoring points

are selected, NPAS should then determine how frequently the link/path information

is collected and distributed. In addition to collecting path information from ISPs

(ASes), NPAS also collects information about paths through the NPAS feedback

API. So NPAS should know how to handle feedback.

7.1 Changing the Monitoring Points

We have shown that the set of top ASes changes slowly. Consequently, NPAS can use

the past several hours’ requests to identify the set of links that need to be monitored.

However, NPAS also needs to identify an additional set of links to be monitored

based on the most recent path requests. ASes that become popular in the past few

hours may not otherwise be considered as the top requested ASes. Monitoring links

88

to those recent popular ASes can help answer requests for ASes that gain temporary

popularity or start to become popular.

To include ASes that have recently become popular, NPAS needs to change the

set of links/nodes it monitors periodically (e.g., every 30 minutes or every hour). As

a result, NPAS periodically (we will use a period of one hour in our example) picks

the set of links (SL) to be monitored as follows:

1. Find the top N ASes 1 based on the number of requests in the past several

hours (e.g., 12 hours), and place these top ASes in the AS set A1.

2. Find all links on the paths from any source AS to ASes in set A1, and place

these links in link set L1.

3. Find M shared links 2 from the link set L1 based on the method described in

Section 6.3.2, and place these M links into the link set SL.

4. Find the top N ASes based on the number of requests in the past one hour,

and place these top ASes that are not in AS set A1 in the AS set A2.

5. Find all links on the paths from any source AS to ASes in set A2, and place

these links in the link set SL2.

6. Order links in set SL2 based on the method as described in Section 6.3.2.

7. Add the first Y new links 3 from the set SL2 to SL or until no more new links

can be added.

After the popular links are found, NPAS needs to determine the target ASes to

be monitored in order to cover these popular links. Based on our previous study in

1We set N = 500 because more than 80% flows are destined to the top 500 ASes in the UKY
trace data.

2We set M = 5000 based on the experimental results from chapter 6.
3We set Y = 500 because the popular ASes change slowly and NPAS only needs to monitor a

small number of extra links in order to monitor paths to a few ASes that became popular in the
past hour.

89

Chapter 6, NPAS should monitor 50 to 100 ASes if NPAS picks one AS per link or

600 ASes if both sides of a link need to be monitored.

Let CMAS stand for the current set of ASes that are being monitored, and CLh

stand for the average link hit ratio since the last update. On each update, given the

shared link sets SL, NPAS determines ASes to be monitored as follows:

1. If CLh is less than MinHitRatio (where MinHitRatio is the minimum link hit

ratio allowed before we regenerate the set of monitored ASes. For example, we

can set MinHitRatio=75% to indicate that NPAS wants to provide a minimum

link hit ratio of 75%), regenerate the set of ASes to be monitored: clear the AS

set CMAS, find MPM target nodes (or MPN target nodes if NPAS monitors

both endpoints of a link) 4 to be monitored based on the method described in

Section 6.4, and put these nodes in CMAS.

2. Put Links that are in SL and can be monitored by monitoring ASes in CMAS

in the link set SM . If the number of links in SM is less than M (or M+Y if a

maximum of Y recently requested links are considered) 5, additional candidate

links are added into SM in sorted order (using the algorithm in Section 6.3.2)

until the size of SM reaches M (or M+Y) or no more links can be added (note

that we only pick links that can be monitored by monitoring ASes in CMAS).

Although the set of shared links can be updated every 30 minutes (or every hour),

there is no need to update target ASes on every update, since enabling a monitoring

point in (or collecting information from) a new AS may be expensive. A high link

hit ratio usually means NPAS can provide (partial) path information for a high

percentage of traffic. Therefore, as described in Step 1, as long as monitoring the

current set of ASes can help NPAS achieve a high link hit ratio (e.g., 75% link hit

ratio), NPAS does not need to change the set of ASes to be monitored.

4we set MPM=100 and MPN=600 based on experiment results in Section 6.4.
5We set M=5000 and Y = 500 as described in the algorithm to update links to monitor.

90

7.2 Gathering and Distributing Dynamic Path

Measurements

NPAS wants to provide applications with up-to-date path/link information. However,

increasing the monitoring rate also means more processing overhead and more network

overhead. As described in Section 6.5, NPAS can monitor 5000 shared links at a

rate of 100 times per second with a relatively small amount of network bandwidth

consumption. Unfortunately, distributing information about 5000 links frequently to

all NPAS local request servers may consume a huge amount of network bandwidth.

To reduce the distribution traffic overhead, the shared NPAS server can distribute

link measurements at a rate based on the link’s request rate at the NPAS local request

server (as described in Section 6.5). Alternatively, NPAS can use infrequently used

paths to retrieve and distribute measurement data. Because NPAS operates in an

environment where applications can select paths, NPAS itself can choose paths to

distribute the updates that interfere the least with data-plane traffic.

7.3 Getting Path Measurements From Feedback

User feedback contains end-to-end path measurements that were collected by

applications and sent to NPAS. Feedback can also indicate the paths that were

ultimately used by applications (Note that NPAS gives advice, and, without the

feedback service, would not know which pieces of advice the application valued and

ultimately used). Using feedback has several benefits. First, NPAS may be able to

get end-to-end path information that can not be collected from direct measurements.

Second, NPAS learns from feedback about the application’s choice of routing path,

which gives NPAS an indication of whether applications are satisfied with NPAS’s

advice, or it helps NPAS recommend the same path to another application with

similar requirements.

91

7.3.1 Handling Feedback

Based on our study of an existing traffic trace from the University of Kentucky, there

could be 2000 path requests per second for a single AS. If each request was followed

by feedback, there would be 70 million feedback messages per second from all ASes

combined. However, not all applications want to provide feedback, nor does NPAS

need feedback at such a fast rate. NPAS knows how frequently it needs to update

information about a path and uses the feedback API to collect feedback about the

path.

Each time NPAS tries to calculate path information from the feedback, it may

need multiple feedback updates in order to accurately estimate the path information.

To protect user privacy, NPAS collects feedback through the NPAS local request

servers. The NPAS local request server can remove the sender’s ID in the feedback.

The feedback service informs the local request server of the frequency it wants to

update path information for a specific path. The NPAS local request server will then

try to collect feedback for that path at that frequency. The NPAS local request server

is also responsible for verifying the identities of applications that provide feedback.

There are two different types of feedback as described in Section 5.3. First, the

feedback can include the actual metric value of a path, such as the the average latency

of a path and the maximum sending rate of a path. Second, the feedback can contain

the application’s choice of routing paths. For example, an application can inform

NPAS that one of the recommended paths has actually been used.

For the first type of feedback, the metric value of a path can be calculated based

on the average value of path metrics from recent feedback. For the second type of

feedback, NPAS learns what paths are picked most by applications from a list of paths,

and recommends these most picked paths to applications with similar requirements if

NPAS could not give path advice based on its own path measurements. On the other

hand, the second type of feedback also informs NPAS whether applications pick the

92

paths according to the NPAS’s advice. Applications may choose a different path if

they are not satisfied with the recommended paths. Therefore, the second type of

feedback tells NPAS the quality of path advice. If the most picked path is not the

highest ranked path, the NPAS local request server may ask the shared NPAS server

to distribute the link measurements on involved links more frequently in order to get

more accurate ratings of the related paths.

93

Chapter 8

Rating Paths

After collecting path information, NPAS uses the path information to rate paths for

applications. The path information is cached in the NPAS local request server to

enable fast response and reduce the bandwidth consumption between the NPAS local

request server and the shared NPAS server. In addition, NPAS rates paths efficiently

and takes simultaneous competing requests into account when giving out path advice.

8.1 Storing Path Information

The NPAS information storage service is responsible for storing and sharing path

measurements between NPAS components. Because the goal of NPAS is to provide

up-to-date advice based on the most recent information collected, the information

storage service does not need to keep outdated path statistics or requests. Instead,

the information storage mainly focuses on the recently collected measurements and

feedback. However, the information storage service can keep summarized and average

statistics, such as the number of requests asking for a specific (partial) path and the

average latency of a path.

As shown in Figure 8.1, shared NPAS servers collect path information (line a) and

aggregate path requests for paths (line b) through various NPAS collection servers and

NPAS local request servers. The information storage service is also responsible for

aggregating path requests from the shared NPAS servers, and making aggregated

94

Shared NPAS Server Shared NPAS Server

NPAS Collection Server

AS 1 AS N

AS 2

Core NPAS Service

NPAS Local

Request Server

NPAS Local

Request Server

Cache of Measurement Data

Primary Measurement Data Storage

c

Figure 8.1: The NPAS System Data Flow

information available to the shared NPAS server where the monitoring decision is

made (line c). Similarly, the measured path information needs to be shared among

the shared NPAS servers in order to be distributed to NPAS local request servers

(line c and line d).

The information storage service also works with the NPAS local request server

to reduce the bandwidth consumption through caching. In addition, the information

storage service does not aggregate the user’s private information by using the NPAS

local request server as a proxy between applications and the shared NPAS server.

8.1.1 Caching the Link/Path information

The link/path information needs to be delivered to individual NPAS local request

servers in order for the advising service to give path advice. As mentioned in

Section 6.5, it consumes about 20 Gbps of bandwidth to distribute the information

about the top 5000 links. To limit the bandwidth needed to collect and distribute

information about infrequently monitored paths, the local request server can cache

and reuse the path information for future applications’ requests.

To be more specific, for paths that are not covered by frequently measured links.

the NPAS local request server determines how long the path information will be

95

cached and reused. The predicted collection time of the end-to-end path measurement

is used as the path measurement expiration time.

Initially, the NPAS local request server only caches the measurements of the

frequently monitored shared links, which are distributed by the shared NPAS server at

the local request rate. If a request cannot be answered based on the cached link/path

information, the NPAS local request server tries to collect feedback about the path

information. If the NPAS local request server is able to collect feedback about the

requested path, the path information from the feedback will then be cached.

8.1.2 Privacy Issues

Applications make use of NPAS through the NPAS local request server so as to hide

their identities from the shared NPAS server. NPAS implementations can have their

own ways to protect the user’s privacy. For example, in an IP network, an easy way

to protect the user’s privacy is to replace the source IP address with the IP address

of the egress link of the source AS. As a result, the shared NPAS server can still learn

what AS-level paths are requested in order to compute what AS-level links need to

be monitored, without being able to identify the application’s source IP address.

In addition, as described in Section 4.3, by sending the aggregated path requests

to the shared NPAS server, the NPAS local request server prevents the shared NPAS

server from tracking traffic of individual requests. Furthermore, the local request

server can also remove sensitive requests from the aggregated requests or choose to

only communicate with trusted core NPAS services to protect privacy.

8.2 Making Path Recommendations

NPAS makes use of the NPAS advising service to evaluate paths based on the

application’s requirements and the path information that NPAS has collected.

The NPAS local request server may get several thousands of requests per second.

96

Consequently, the answer to a request should be calculated in a fast way to keep up

with the request rate.

To generate answers to applications that request path advice, the NPAS local

request server uses frequently measured link measurements (including the local link

measurements) and the cached end-to-end path measurements (e.g., the cached path

measurements from feedback) in its local storage to evaluate a path. If only partial

path information is available at the time of path request, the NPAS local request

server can give the path advice based on partial path information or simply provide

the partial path information to applications (note that the NPAS local request server

may try to collect feedback about the requested path, and the feedback can be used

to provide advice for future requests). In short, the NPAS local request server should

provide path advice in an efficient way.

8.3 Handling Competing Requests

Taking recommended routing paths may result in selfish routing [86, 87], and may

also lead to traffic oscillations [88, 89] when there are simultaneous requests that

share some links. Simultaneous path requests from the same AS and simultaneous

path requests from multiple ASes may lead to traffic oscillation if traffic is sent over

the “best” path without considering the possibility that the simultaneous requests

may congest certain links of the path.

To give intelligent path advice to solve the traffic oscillation problem, the path

advice for requests from the same AS are cached at the local NPAS request server.

As a result, previous path advice is taken into consideration when new advice is

made so that the local NPAS request server can avoid congesting paths. In other

words, the second best path may be recommended (i.e., ranked as the best path)

when the best path was used by other simultaneous requests. More precisely,

the requested bandwidth of the cached advice (assuming the path request had a

97

bandwidth specification, especially for bandwidth intensive applications) is deducted

from the current available bandwidth of a path when rating of the path is calculated

for new requests. The cached advice (requests) on a link is cleared when the link

measurement is updated (or when the predetermined cache time is reached for

infrequently monitored links).

Although the local NPAS request server can cache advice (requests) from the same

ASes, simultaneous traffic from other ASes may also congest links that are used by

current AS, and thereby lead to traffic oscillation. To solve this problem, the shared

NPAS server can set traffic limits on the 5000 globally shared links for ASes. ASes

will each get their own limit for the 5000 shared links based on the AS’s link usage

demand calculated from the path requests. The traffic limit is represented in the

form of a percentage value which indicates what percent of available bandwidth an

AS can use for simultaneous requests between two updates of the link measurement

(e.g., 10 ms). The traffic limit on a link is invoked when the shared NPAS server

detects traffic oscillation on that link. The local NPAS request server will suggest

the next best path to applications when the limit of some shared link is reached.

When the traffic limit on a link is invoked, the local NPAS request server sends the

current demand of the link (e.g., how much bandwidth is requested by applications

in the most recent 10 milliseconds) to the shared NPAS servers at a fast rate (e.g.,

10 to 100 times per second) to help keep the traffic limit for each AS updated. The

updated traffic limit on a link is distributed to the local NPAS server along with the

link metric update.

8.4 Path Advising Examples

Each NPAS server may have its own algorithm to evaluate paths and give path

advice to applications. In the following, we describe a path advising example. For

simplicity, we only consider two network metrics: bandwidth and latency. To handle

98

the path rating request, paths that meet the application’s requirements are ordered

(in a descending order) by available bandwidth (or in an ascending order if ranking

by latency). For example, consider a request asking for path advice on a set of

paths with a 1Mbps minimum required bandwidth and a 40ms maximum allowed

latency. The local NPAS server will first look at the requested paths whose path

information is available in NPAS, and then find the paths that have more than 1Mbps

available bandwidth and have no more than 40ms latency. In addition, NPAS orders

the paths first by available bandwidth and secondly by latency (note that NPAS

can order paths by latency first if the application specifies the latency requirement

before the bandwidth requirement in the request to imply that the application is more

concerned about latency). If NPAS cannot find a path whose information is available

and that also meets the application’s requirements, NPAS may choose to return

the default path (e.g., the shortest path). NPAS also informs applications whether

the path ratings on certain paths are calculated based on partial path information.

Applications can either take the recommended paths or make their own decisions

based on (partial) path information.

In addition to evaluating paths for applications, the rating API also enables

receiver to specify constraints on the incoming paths. The constraints are verified at

the NPAS local request server where the constraints were received and then forwarded

to the shared NPAS server. The shared NPAS server then distributes constraints to

other NPAS local request servers. NPAS takes these constraints into consideration

when it makes future path advice.

The NPAS system may design its own algorithm to handle scheduling requests.

A simple way of handling scheduling requests is to use the greedy algorithm. For

example, to schedule a set of flows on a set of paths, the flows can be scheduled

one by one, and each time the flow is assigned a highest ranked path based on the

requirements. The path information will be updated whenever a flow is assigned

99

to a path to indicate that the resource required by the flow is reserved. Although

this scheduling algorithm may not produce a optimal solution, it can find a possible

scheduling. In addition, the handling of scheduling requests is very efficient due to

its simplicity.

100

Chapter 9

Simulation

To evaluate NPAS, we tested NPAS using a simulated network with simulated network

traffic. Our goal was to demonstrate that NPAS can provide correct path advice for

most requests by keeping track of up-to-date path information. We also studied how

applications’ performance can be improved by using NPAS, and how the local request

server can help reduce network overhead.

9.1 Designing the Simulation System

To simulate a realistic topology, the current Internet was modeled at the AS level.

We used the AS relationship data from CAIDA [84] to build the simulation network.

9.1.1 Simulating Network Traffic

We generated simulated traffic to test NPAS’ ability to give good path advice.

Generating network traffic that can change over time creates a dynamic network

environment that NPAS needs to model in order to give correct path advice.

It is infeasible to simulate the network traffic at the packet level because it would

require a huge amount of CPU and memory resources. Therefore, we simulated the

network traffic at the flow level. We implemented the model described in [90] to

generate network traffic for NPAS, and generated a TCP-like flow for each pair of

ASes. The amount of network traffic on each AS-level link changes over time in

101

the simulated network based on traffic pass rate (i.e., the percentage of sent traffic

that actually reaches the destination) on a path and the amount of retransmitted

traffic [90].

9.1.2 Simulating the Applications’ Requests

To make use of NPAS, applications first send path requests to NPAS, and then use the

recommended paths to send packets. According to the rating API, a request contains

the possible choices of routing paths and the application’s requirements for the path.

In the simulation, a path was represented by a list of AS IDs, and the application’s

requirements included the network metric requirements (e.g., how much bandwidth

an application needs) and the expected time of using the path.

To simulate realistic requests, the Netflow trace data from the University of

Kentucky was used to drive the generation of requests. For each record in the trace,

we generated a request that includes multiple paths to the destination in the record

and has the same duration of using the path. To test NPAS under different network

loads, we varied the size of a flow.

9.1.3 Simulating NPAS

Based on the simulated requests, the algorithm described in Section 7.1 can be used

to dynamically decide what monitoring points need to be turned on/off in NPAS.

Another job of NPAS is to collect link/path measurements from the monitoring points.

Simulating collection of link/path measurements requires us to calculate link/path

information in the simulated network.

NPAS is also in charge of collecting feedback from applications. In our simulation,

we assumed NPAS can receive feedback from applications. A maximum collecting rate

of feedback messages is set to mimic the resource constraint (e.g, computing resource,

network resource, etc.) of NPAS. We changed the maximum feedback collection rate

in our simulation runs to test NPAS under various network conditions.

102

In our simulation, NPAS monitored no more than 5000 shared links (by monitoring

100 ASes) and 0-5 local links for most ASes. NPAS evaluated paths that were

completely monitored. The “best” evaluated path was given as advice to applications

if the “best” evaluated path met the application’s requirements or the “best”

evaluated path was better than the default path based on the NPAS’s knowledge

of path information. Otherwise, the default path was used by applications. The

monitoring system also took simultaneous requests into consideration when it gave out

path advice to prevent congestion on a path while alternative paths were underused.

9.2 Simulation Results

In our simulation, we tested how applications can improve their performance in terms

of throughput and latency by taking the NPAS recommended paths. We also studied

the percentage of traffic flows that can receive “helpful” path advice from NPAS.

In addition, we tried to show the stability of the NPAS advice, the needs of using

the NPAS local request server to reduce network overhead, and the benefits of using

feedback.

9.2.1 Throughput Improvement

To demonstrate how applications can benefit from NPAS, we calculated the average

throughput of applications from various ASes. By comparing the throughput of

applications that used the recommended paths, the default paths, and the paths

that are picked based on the complete knowledge of the network, we can show how

much improvement applications can achieve with the help of NPAS.

In addition to the network traffic as described in Section 9.1.1, the trace traffic was

also generated to represent traffic from applications. The trace traffic took the default

paths without the use of NPAS. With NPAS, the trace traffic was sent through the

recommended paths. Since simultaneous trace traffic may compete with each other

103

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400A
ve

ra
ge

 p
er

 F
lo

w
 T

hr
ou

gh
pu

t(
K

B
yt

es
)

Average Flow Size(KBytes)

Average Throughput Per Flow for Traffic from UKY

Average Flow Sent
Default Path

Best Path
Recommended Path

Figure 9.1: Average Throughput Per Flow for Traffic from UKY

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400A
ve

ra
ge

 p
er

 F
lo

w
 T

hr
ou

gh
pu

t(
K

B
yt

es
)

Average Flow Size(KBytes)

Average Throughput Per Flow for Traffic from Purdue

Average Flow Sent
Default Path

Best Path
Recommended Path

Figure 9.2: Average Throughput Per Flow for Traffic from Purdue

and lead to traffic oscillation, NPAS took the previous requests into consideration

when it gives out new path advice as described in Section 8.3.

The actual sending rate of the trace traffic represents the throughput of the

applications. In the simulation results, we compared the throughput of applications

using distinct paths under various trace traffic loads by changing the amount of traffic

per request.

In Figure 9.1 to Figure 9.3, we gradually increased the trace traffic by increasing

the flow size from 1Kbytes per flow to 400Kbytes per flow (indicated in the red

line), and studied the average per-flow throughput (the actual sending rate) of taking

104

distinct paths for various source ASes. The trace traffic flows were generated based

on our traffic trace data. The green line represents the average throughput per flow

if all flows take default paths. The blue line represents the average throughput per

flow if all flows can take best paths from the set of possible paths. In other words,

the routing decision was made with the knowledge of all the possible paths. The

purple line indicates the average throughput if flows are routed based on the NPAS

recommended paths.

We can see from Figure 9.1, taking the best path, the average throughput for

traffic from UKY is close to the sending rate until the paths are congested. The

average throughput of taking the NPAS recommended paths is slightly less than the

throughput of taking the best path. The average throughput of taking the default

paths is far below the NPAS sending rate. When the per-flow size reaches about 300K

bytes, we can see the noticeable congestion on the paths if all traffic is sent via the

best path. However, it is not until the per-flow size reaches about 350K bytes, that

the paths are congested if traffic is sent using the NPAS recommended path. The

average throughput for traffic originating from Purdue (Figure 9.2) has the similar

pattern as the throughput for traffic originating from UKY.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400A
ve

ra
ge

 p
er

 F
lo

w
 T

hr
ou

gh
pu

t(
K

B
yt

es
)

Average Flow Size(KBytes)

Average Throughput Per Flow for Traffic from FSU

Average Flow Sent
Default Path

Best Path
Recommended Path

Figure 9.3: Average Throughput Per Flow for Traffic from FSU

In Figure 9.3, the FSU paths become congested with relative small amount

105

of increment in flow size. But we can still see the benefit of taking the NPAS

recommended path before paths are congested.

Similar results can be observed in our test for other representative ASes. In

general, making use of NPAS can improve the throughput of applications. The

improvement of throughput by taking NPAS recommended path is close to the

improvement of throughput by taking the best possible path.

9.2.2 Latency Improvement

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 20 40 60 80 100 120 140 160 180 200

#F
lo

w

minutes

Latency Improvement Statistics for UKY

Total Flows
Non-Optimal Flows (Default Path)

Improved Flows (Recommended Path)
SubOptimal Flows

Figure 9.4: Latency Improvement Statistics for UKY

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 20 40 60 80 100 120 140 160 180 200

#F
lo

w

minutes

Latency Improvement Statistics for Columbia

Total Flows
Non-Optimal Flows (Default Path)

Improved Flows (Recommended Path)
SubOptimal Flows

Figure 9.5: Latency Improvement Statistics for Columbia

106

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 20 40 60 80 100 120 140 160 180 200

#F
lo

w

minutes

Latency Improvement Statistics for FSU

Total Flows
Non-Optimal Flows (Default Path)

Improved Flows (Recommended Path)
SubOptimal Flows

Figure 9.6: Latency Improvement Statistics for FSU

In addition to the throughput, latency is another important network metric that

applications need. In our simulated network, we varied link latency over time. For

example, at each simulation iteration, for a given link, the link’s queuing latency was

dynamically picked from a predefined range representing the range of latencies that

a flow might experience going over that link. Therefore, we can evaluate how NPAS

reduces latency for applications under various network conditions.

In Figure 9.4 to Figure 9.6, we can see the latency improvement statistics over

time for these example ASes. The red line indicates the total number of flows. The

green lines (Non-Optimal Flows) represents the number of flows whose default paths

are not the paths with lowest latency. The blue line (Improved Flows) represents the

number of flows whose latency can be reduced by taking the recommended paths.

Although taking the NPAS recommended path can reduce the latency, the latency

may still be greater than the latency of the best path. The purple line represents the

number of flows that can get lower latency by taking the best path rather than taking

the NPAS recommended path. In general, the number of flows that are represented

by the purple line is relatively small.

We also tested latency improvement statistics for other university ASes. For most

ASes in our test, about 70% of the Non-Optimal flows can get a NPAS recommended

107

path that has less delay than the default path.

9.2.3 Flow Coverage and Correctness

As shown earlier, applications can improve their throughput by using recommended

paths. However, applications may receive distinct path advice for sending each flow.

To study the quality of path advice, flows were separated into categories, including

helpfully recommended flows (i.e., the recommended path was either the best path

or a path that was better than the default path); Non-Optimal flows (i.e., the

default path was not the best possible path); improved flows (i.e., flows that got

the improved performance by taking the recommended paths rather than the default

paths); maximally improved flows (i.e., flows whose recommended paths were not the

default paths but were the best possible paths).

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 20 40 60 80 100 120 140 160 180 200

#F
lo

w
s

Minutes

200 Minutes Flow Coverage Statistics for UKY

Total Flows
Helpfully Recommended Flows

Non-Optimal Flows (Default Path)
Improved Flows (Recommended Path)

Maximally Improved Flows (Recommended Path)

Figure 9.7: 200 Minutes Flow Hit Statistics for UKY

In Figure 9.7 to Figure 9.10, the red, green, purple, light blue, and black line

represent the number of total flows, helpfully recommended flows, Non-Optimal flows,

improved flows, and maximally improved flows respectively. In these experiments, the

achieved bandwidth of a path was used to determine the quality of the path.

We can see from the Figure 9.7, Figure 9.8, and Figure 9.9 that NPAS can

provide around 80% of flows with “helpful” advice. In addition, the number of

improved flows is also around 80% of the number of Non-Optimal flows, which means

108

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 20 40 60 80 100 120 140 160 180 200
#F

lo
w

s
Minutes

200 Minutes Flow Coverage Statistics for UCB

Total Flows
Helpfully Recommended Flows

Non-Optimal Flows (Default Path)
Improved Flows (Recommended Path)

Maximally Improved Flows (Recommended Path)

Figure 9.8: 200 Minutes Flow Hit Statistics for UCB

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 20 40 60 80 100 120 140 160 180 200

#F
lo

w
s

Minutes

200 Minutes Flow Coverage Statistics for Purdue

Total Flows
Helpfully Recommended Flows

Non-Optimal Flows (Default Path)
Improved Flows (Recommended Path)

Maximally Improved Flows (Recommended Path)

Figure 9.9: 200 Minutes Flow Hit Statistics for Purdue

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 20 40 60 80 100 120 140 160 180 200

#F
lo

w
s

Minutes

200 Minutes Flow Coverage Statistics for FSU

Total Flows
Helpfully Recommended Flows

Non-Optimal Flows (Default Path)
Improved Flows (Recommended Path)

Maximally Improved Flows (Recommended Path)

Figure 9.10: 200 Minutes Flow Hit Statistics for FSU

80% of flows that have potential to improve their performance will actually improve

their performance by taking the recommended paths. Flows originating from most

109

representative ASes have a similar pattern to flows originating from these three ASes.

We can also see that the number of maximally improved flows is close to the number

of improved flows, which implies that if the recommended path is better than the

default path, the recommended path is likely to be the best path.

However, a few ASes, such as the FSU AS (shown in Figure 9.10), achieve a lower

rate of “helpful” advice. But NPAS is still useful for traffic from these ASes. For

example, more than 60% of flows from FSU AS can still get “helpful” advice.

9.2.4 NPAS Stability

It is important for NPAS to provide future applications with stable path advice.

Unstable path advice often leads to traffic oscillation. To demonstrate the stability

of NPAS’s advice, we kept track of the available bandwidth of a set of paths that

connect the same pair of ASes when the trace traffic was gradually increased. If

NPAS does not give stable advice, the available bandwidth of the chosen set of paths

will fluctuate wildly. In contrast, with stable advice, the available bandwidth of the

set of paths will gradually come close to each other as the trace traffic increased.

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 0 500000 1e+006 1.5e+006 2e+006 2.5e+006 3e+006 3.5e+006

A
va

ila
bl

e
B

an
dw

id
th

 (
K

by
te

s)

Accumulated Flow Size (Kbytes)

Stability Test for a Set of Paths Originating from UKY

path1
path2
path3
path4
path5

Figure 9.11: Stability Test for a Set of Paths Originating from UKY

Figure 9.11 shows the available bandwidth on a set of paths that are originated

from UKY AS and destined to the same destination. We can see that the available

bandwidth on these paths come close to each other when the number of flows grows,

110

and there is no traffic oscillation. Since NPAS takes into account simultaneous

requests as described in Section 8.3, it provides stable path advice.

9.2.5 Reduced Network Overhead with Local Request Servers

The NPAS local request server is used to enable fast response and reduce network

overhead. Without the NPAS local request server, every request needs to be sent

to the shared NPAS server, thereby introducing a great amount of network traffic.

With the NPAS local request server, about 60% to 80% requests can be handled

with measurements of 5000 globally monitored links. Distributing measurements of

5000 shared links based on request rate only consumes a small amount of bandwidth

(described in Section 6.5). In addition, when a path request that cannot be answered

based on cached link/path information is received, the NPAS local request server

needs to contact the shared NPAS server for the link/path measurements. The NPAS

local request server can cache and reuse the link/path information.

Figure 9.12 compares the number of requests that the shared NPAS server needs

to handle without the use of a local cache server (a NPAS local request server) to the

number of requests the shared NPAS server needs to handle with the use of a local

cache server (a NPAS local request server) for the UKY AS. In Figure 9.12, we set

cache expiration time to 10 minutes. However, requests for paths that are covered

by globally shared links can get much more frequently updated path information

(e.g., updated every 10 ms) as described in Section 6.5. Each request that is sent to

the shared NPAS server and the returned path measurements introduce additional

overhead on the network. On the other hand, if the request can be handled by

the NPAS local request server, it keeps the NPAS related traffic local and does not

introduce global network overhead.

In Figure 9.12, we can see that the number of requests that need to be sent to the

shared NPAS server is very high (indicated in the green line) without the use of the

111

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 20 40 60 80 100 120 140 160 180 200

#R
eq

ue
st

s

Minutes

Cache Hit Statistics for UKY

#Request(with Cache)
#Request(without Cache)

Figure 9.12: Cache Hit Statistics for UKY

NPAS local request server. On the contrary, with the NPAS local request server, the

number of requests for which local request server needs to contact the shared NPAS

server is relatively low (indicated in the red line in Figure 9.12). In general, the use of

the NPAS local request server can greatly help reduce the global network overhead.

9.2.6 Benefits of Using Feedback

Making use of feedback that contains path/link performance measurements can help

improve the advice NPAS gives out. On the other hand, collecting feedback also

introduces additional network overhead.

Path measurements that are obtained from feedback may be outdated at the time

that the path measurements are used to give path advice. However, if the path

measurements that are collected from feedback are still accurate when they are used

to rank paths, the correct rate of NPAS advice can be improved by collecting and

using feedback.

Figure 9.13 shows how the number of feedback messages that is collected by NPAS

affects the 3-path hit ratio in a network that supports 5 paths for our representative

university ASes in the US. In our simulation, we assumed the feedback can be used to

correctly rate a path, and NPAS collected one feedback message per path. In reality,

112

0 %

20 %

40 %

60 %

80 %

100 %

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
at

h
H

it
R

at
io

#Feedback

The Global 3-Path Hit Ratio (With Feedback)

UKY
MIT

UCB
Columbia

Purdue
Utah
FSU

Figure 9.13: 3-Path Hit Ratio With Feedback for US ASes

0 %

20 %

40 %

60 %

80 %

100 %

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
at

h
H

it
R

at
io

#Feedback

The Global 3-Path Hit Ratio (With Feedback)

Tsinghua(CN)
Oxford(UK)

USP(BR)
MSU(RU)

UniMelb(AU)
UCT(ZA)

Figure 9.14: 3-Path Hit Ratio With Feedback for International ASes

NPAS may need to collect multiple feedback messages for the same path in order

to accurately estimate the path information. The unmonitored paths were sorted

according to how frequently the paths were requested by applications, and NPAS

collected feedback on a predetermined number of paths according to their sorted

order.

As we can see from Figure 9.13, collecting 2000 feedback messages per AS can

help most ASes achieve a 90% 3-path hit ratio. Comparing to the path hit ratio

without the use of feedback, collecting 2000 feedback messages provides around 10%

to 40% improvement for 3-path hit ratio. Figure 9.14 shows the 3-path hit ratio with

113

feedback for International ASes. With 2000 feedback messages, most ASes reach

around a 3-path hit ratio of 90%.

We can see that feedback provides a reasonable improvement on path hit ratio.

However, collecting feedback may require the cooperation of applications and consume

additional network resources. Therefore, ASes that already achieve high path hit

ratios may decide not to collect feedback. In other words, NPAS can decide whether

it needs to collect feedback and how many unmonitored paths it would like to collect

feedback for.

114

Chapter 10

Conclusions

Future networks will likely provide applications with the ability to select the path(s)

their data traverses between a source and destination. Because of the huge overhead of

frequently monitoring all paths, future routing services will not be able to rank paths

for applications. To help future applications select among potential routing paths,

we proposed a new network path advising service (NPAS). NPAS is designed as a

supplementary service to the routing service. Applications use the routing service to

get possible paths between two end hosts, and then use NPAS to rate paths based on

path information and the applications’ requirements (e.g., QoS requirements). Based

on the rating results, an application can pick routing paths that have high ratings

and meet the application’s requirements.

Comparing to the traditional monitoring systems, NPAS has several advantages.

First, NPAS is designed specifically for applications rather than for network admin-

istrators. Second, the paths being monitored are determined based on applications’

requests. Third, application feedback is used to improve path evaluation. Fourth, the

receiver can tell NPAS its preferences about incoming paths. Fifth, NPAS can scale

to the size of the Internet while still giving correct advice for around 75% of traffic.

NPAS leverages a distributed architecture to deliver shared path/link information

and local path/link information to applications. The application’s requests will be

handled locally to enable fast response and help NPAS scale. Only the aggregated

115

statistics of requests need to be sent to shared NPAS servers to help NPAS decide

monitoring points. The information of the shared paths/links is distributed by shared

NPAS servers to NPAS local request servers at a rate based on the request frequency.

The NPAS local request server can evaluate paths for applications based on the shared

path information and local path information. In addition, NPAS provides a set of

APIs to help applications rank/rate paths, schedule traffic across multiple paths, and

report feedback.

Based on the analysis of the real-world traffic trace, NPAS is able to develop

algorithms to identify a small number of shared links (i.e., 5000 links) and nodes (i.e.,

100 to 600 nodes) to monitor while still “covering” a large percent traffic (e.g., 75% of

traffic) with the help of a local monitoring service. The link/path information needs to

be collected frequently in order to provide applications with up-to-date information.

Since NPAS only monitors a small number of shared links (i.e., 5000 links), it can

monitor these links frequently (e.g., 100 times per second) without overloading the

network. Information about shared links/paths alone may not cover the entire path,

because key local links for an AS may not be used by other ASes and thereby are not

monitored globally. As a result, NPAS also monitors local links in order to provide

an end-to-end view of a path to applications. The local link information is kept at

the NPAS local request server and is not shared among all ASes.

Using the simulated network, we demonstrated that NPAS will help applications

improve their throughput and latency. In addition, NPAS provided around 80% of

flows with “helpful” advice for most ASes we evaluated.

10.1 Future Work

NPAS shows great potential to provide beneficial path advice to future applications,

but there remains aspects of NPAS that need additional study. The following outlines

future work that would help produce a more complete NPAS:

116

Transitioning from the current Internet

In current IP networks, the source routing approach is often disabled. To pro-

vide applications with choices of routing paths, a modern network architecture,

such as ChoiceNet [77], will need to be deployed. Although it is difficult to

build a complete new Internet architecture, we can always deploy source routed

networks using overlay networks. The applications that need to pick a custom

path can join the overlay network.

NPAS is designed for applications that are running on a network the size of

the current Internet. We mentioned earlier that NPAS can pay ISPs to collect

path information. On the other hand, ISPs may be willing to provide path

information in order to attract traffic and make money by carrying traffic though

their domains. The commercial model needs to be further studied before NPAS

can be deployed. For example, the responsibility of each party and the payment

mechanism need to be addressed. In addition, the protocol for NPAS to collect

path information from ISPs also needs to be defined.

To help applications use NPAS, a library will need to be developed. There could

be two types of libraries: the library that applications can invoke directly to

use the NPAS service, and the library that is used by the operating system to

support transparent use of the NPAS service for applications.

Giving Intelligent Path Advice

This thesis focuses on determining what nodes/links to monitor and on how to

collect path/link information, rather than making intelligent use of path/link

information when giving path advice. Although NPAS may not have complete

path information, making intelligent use of partial path information may be

able to identify whether one path is better than another. For example, if two

paths share some links and all links on the paths except the shared links are

117

monitored, NPAS would be able to compare these two paths. Alternatively,

if NPAS knows that the link that NPAS does not have information about is

not a bottleneck link (through some out-of-band methods or learning from the

historical data), NPAS may still be able to evaluate paths that containing the

link without knowing the current information of that link.

Another possibility for giving intelligent path advice is to predict the future

path information based on the current path information, path requests and

historical path statistics. The prediction about path information can be used

to improve the advice NPAS gives.

The NPAS APIs also enable receivers to specify constraints on the incoming

paths. Since NPAS is designed for Internet-scale systems, we need to study

what constraints are allowed, how constraints are updated in NPAS, and how

to use these constraints to give path advice.

Providing Complete Path Information

NPAS may also need to collect links that are requested infrequently in order

to provide complete path information for applications. An algorithm needs to

be designed to determine the collection frequency of these links. In addition,

how information of these infrequently requested links is distributed in the NPAS

architecture needs to be addressed.

Collecting and Verifying Feedback

Feedback can help NPAS learn about a path. However, feedback can also

be unwanted, outdated or inaccurate. To make better use of feedback, we

need to study how NPAS can filter out “wrong” (e.g., unwanted, outdated,

inaccurate) feedback. NPAS may need to collect a certain amount of feedback

messages from a variety of applications on a path in order to estimate the path

118

information. Therefore, NPAS may need to decide what applications it wants

to collect feedback from.

Security

Security is not addressed in this thesis, but security mechanisms need to be

designed to ensure a safe and reliable future network path advising service.

NPAS needs to be able to detect malicious applications. For example,

applications may send fake requests to fool NPAS into monitoring some

unwanted links. In addition, applications may flood the local NPAS servers with

requests. Consequently, we must design a security model to help NPAS identify

applications with unusual usage patterns, and prevent these applications from

using NPAS.

119

Bibliography

[1] Border Gateway Protocol. http://en.wikipedia.org/wiki/Border Gateway
Protocol.

[2] Open Shortest Path First. http://en.wikipedia.org/wiki/Open Shortest Path
First.

[3] The Global Environment for Network Innovations. http://www.geni.net.

[4] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton,
M. Freedma, A. Haeberlen, Z. Ives, A. Krishnamurthy, and et al. NEBULA
- A Future Internet That Supports Trustworthy Cloud Computing. http://
nebula-fia.org/papers/NEBULA-WP TOC.pdf.

[5] A. Seehra, J. Naous, M. Walfish, D. Mazieres, A. Nicolosi, and S. Shenker. A
Policy Framework for The Future Internet. In ACM Hotnets, 2009.

[6] A. Anand, F. Dogar, D. Han, B. Li, H. Lim, M. Machado, W. Wu, A. Akella,
D.G. Andersen, J.W. Byers, S. Seshan, and P. Steenkiste. XIA: An Architecture
for an Evolvable and Trustworthy Internet. In Proceedings of the 10th ACM
Workshop on Hot Topics in Networks. ACM, 2011.

[7] K.L. Calvert, J. Griffioen, and L. Poutievski. Separating Routing and Forward-
ing: A Clean-Slate Network Layer Design. In Broadband Communications, Net-
works and Systems, 2007. BROADNETS 2007. Fourth International Conference
on. IEEE, 2007.

[8] Open Networking Fundation. Software-defined Networking: The New Norm for
Networks. ONF White Paper, 2012.

[9] O. Ascigil, K.L. Calvert, and J. Griffioen. On the Scalability of Interdomain
Path Computations. In Proceedings of the 13th IEEE/IFIP Networking, 2014.

[10] Network Monitoring. http://en.wikipedia.org/wiki/Network monitoring.

[11] A. Hanemann, J. Boote, E. Boyd, J. Durand, L. Kudarimoti, R. Lapacz,
D. Swany, S. Trocha, and J. Zurawski. Perfsonar: A Service Oriented Architec-
ture for Multi-domain Network Monitoring. Service-Oriented Computing-ICSOC
2005, pages 241–254, 2005.

[12] Archipelago Measurement Infrastructure. http://www.caida.org/projects/ark.

120

http://en.wikipedia.org/wiki/Border_Gateway_Protocol
http://en.wikipedia.org/wiki/Border_Gateway_Protocol
http://en.wikipedia.org/wiki/Open_Shortest_Path_First
http://en.wikipedia.org/wiki/Open_Shortest_Path_First
http://www.geni.net
http://nebula-fia.org/papers/NEBULA-WP_TOC.pdf
http://nebula-fia.org/papers/NEBULA-WP_TOC.pdf
http://en.wikipedia.org/wiki/Network_monitoring
http://www.caida.org/projects/ark

[13] V. Jacobson. Pathchar: A Tool to Infer Characteristics of Internet Paths, 1997.

[14] M. Jain and C. Dovrolis. Pathload: A measurement Tool for End-to-End
Available Bandwidth. In In Proceedings of Passive and Active Measurements
(PAM) Workshop, 2002.

[15] C. Dovrolis, P. Ramanathan, and D. Moore. What do Packet Dispersion
Techniques Measure? In INFOCOM 2001. Twentieth Annual Joint Conference
of the IEEE Computer and Communications. IEEE, 2001.

[16] Flow-tools. http://linux.die.net/man/1/flow-tools.

[17] K. Lai and M. Baker. Nettimer: A Tool for Measuring Bottleneck Link
Bandwidth. In USITS, 2001.

[18] S. Seshan, M. Stemm, and R.H Katz. SPAND: Shared passive network
performance discovery. In USENIX Symposium on Internet Technologies and
Systems, 1997.

[19] A. Coates, A.O. Hero III, R. Nowak, and B. Yu. Internet Tomography. Signal
Processing Magazine, IEEE, 19(3):47–65, 2002.

[20] Y. Chen, D. Bindel, and R.H. Katz. Tomography-Based Overlay Network
Monitoring. In Proceedings of the 3rd ACM SIGCOMM Conference on Internet
Measurement. ACM, 2003.

[21] S. Chen and K. Nahrsted. An Overview of Quality of Service Routing for
Next-generation High-speed Networks: Problems and Solutions. Special Issue
on Transmission and Distribution of Digital Video, IEEE Network, 12(6):64–79,
1998.

[22] Z. Wang and J. Crowcroft. Quality-of-service Routing for Supporting Multimedia
Applications. Selected Areas in Communications, IEEE Journal on, 14(7):1228–
1234, 1996.

[23] Q. Ma and P. Steenkiste. Quality-of-service Routing for Traffic with Performance
Guarantees. In Building QoS into Distributed Systems, pages 115–126. 1997.

[24] C.R. Lin and J. Liu. QoS Routing in ad hoc Wireless Networks. Selected Areas
in Communications, IEEE Journal on, 17(8):1426–1438, 1999.

[25] A. Nakao, L. Peterson, and A. Bavier. A Routing Underlay for Overlay Networks.
In Proceedings of ACM SIGCOMM. ACM, 2003.

[26] T. Fei, S. Tao, L. Gao, and R. Guerin. How to Select a Good Alternate Path
in Large Peer-to-Peer Systems? In INFOCOM 2006. 25th IEEE International
Conference on Computer Communications. IEEE, 2006.

[27] P.K. Gummadi, H.V. Madhyastha, S.D. Gribble, H.M. Levy, and D. Wetherall.
Improving the Reliability of Internet Paths with One-hop Source Routing. In
Proceedings of the 6th Conference on Symposium on Opearting Systems Design
and Implementation, 2004.

121

http://linux.die.net/man/1/flow-tools

[28] D. Harrington, R. Presuhn, and B. Wijnen. RFC 3411: An Architecture
for Describing Simple Network Management Protocol (SNMP) Management
Frameworks. RFC, 2002.

[29] NetFlow. http://en.wikipedia.org/wiki/NetFlow.

[30] T. Wolf, R. Ramaswamy, S. Bunga, and Ning Yang. An Architecture for
Distributed Real-Time Passive Network Measurement. In Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems, 2006. MASCOTS
2006. 14th IEEE International Symposium on, 2006.

[31] P. Francis, S. Jamin, V. Paxson, L. Zhang, D.F. Gryniewicz, and Y. Jin.
An Architecture for A Global Internet Host Distance Estimation Service. In
INFOCOM 1999. Eighteenth Annual Joint Conference of the IEEE Computer
and Communications. IEEE, 1999.

[32] T.S.E. Ng and H. Zhang. Predicting Internet Network Distance with
Coordinates-Based Approaches. In INFOCOM 2002. Twenty-First Annual Joint
Conference of the IEEE Computer and Communications Societies. IEEE, 2002.

[33] Content Distribution Network. http://en.wikipedia.org/wiki/Content delivery
network.

[34] A.B. Downey. Using Pathchar to Estimate Internet Link Characteristics. ACM
SIGCOMM Computer Communication Review, 29(4):241–250, 1999.

[35] K. Lai and M. Baker. Measuring Link Bandwidths Using a Deterministic Model
of Packet Delay. ACM SIGCOMM Computer Communication Review, 30(4):283–
294, 2000.

[36] M. Jain and C. Dovrolis. Pathload: A Measurement Tool for End-to-End
Available Bandwidth. In Proceedings of Passive and Active Measurements
(PAM) Workshop, 2002.

[37] J. Strauss, D. Katabi, and F. Kaashoek. A Measurement Study of Available
Bandwidth Estimation Tools. In Proceedings of the 3rd ACM SIGCOMM
conference on Internet Measurement. ACM, 2003.

[38] K. Harfoush, A. Bestavros, and J. Byers. Measuring Bottleneck Bandwidth
of Targeted Path Segments. In INFOCOM 2003. Twenty-Second Annual Joint
Conference of the IEEE Computer and Communications. IEEE, 2003.

[39] R.L. Carter and M.E. Crovella. Measuring Bottleneck Link Speed in Packet-
Switched Networks. Performance evaluation, 1996.

[40] V. Paxson. End-to-end Internet Packet Dynamics. In ACM SIGCOMM
Computer Communication Review, volume 27, pages 139–152. ACM, 1997.

[41] K. Lai and M. Baker. Measuring Bandwidth. In INFOCOM 1999. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications. IEEE.
IEEE, 1999.

122

http://en.wikipedia.org/wiki/NetFlow
http://en.wikipedia.org/wiki/Content_delivery_network
http://en.wikipedia.org/wiki/Content_delivery_network

[42] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell. pathChirp:
Efficient Available Bandwidth Estimation for Network Paths. In Passive and
Active Measurement Workshop, 2003.

[43] N. Hu and P. Steenkiste. Evaluation and Characterization of Available
Bandwidth Probing Techniques. Selected Areas in Communications, IEEE
Journal on, 21(6):879–894, 2003.

[44] B. Melander, M. Bjorkman, and P. Gunningberg. A New End-to-End Probing
and Analysis Method for Estimating Bandwidth Bottlenecks. In Global Telecom-
munications Conference, 2000. GLOBECOM’00. IEEE. IEEE, 2002.

[45] A. Gerber, J. Pang, O. Spatscheck, and S. Venkataraman. Speed Testing
Without Speed Tests: Estimating Achievable Download Speed from Passive
Measurements. In Proceedings of the 10th ACM SIGCOMM Conference on
Internet Measurement. ACM, 2010.

[46] V. Sekar, M.K. Reiter, and H. Zhang. Revisiting the Case for a Minimalist
Approach for Network Flow Monitoring. In Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement. ACM, 2010.

[47] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell, T. Seely,
and S.C. Diot. Packet-Level Traffic Measurements from The Sprint IP Backbone.
Network, IEEE, 17(6):6 – 16, 2003.

[48] Domain Name System. http://en.wikipedia.org/wiki/Domain Name System.

[49] K.P. Gummadi, S. Saroiu, and S.D. Gribble. King: Estimating Latency Between
Arbitrary Internet End Hosts. In Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet Measurment. ACM, 2002.

[50] D. Leonard and D. Loguinov. Turbo King: Framework for Large-Scale Internet
Delay Measurements. In INFOCOM 2008. 27th Conference on Computer
Communications. IEEE, 2008.

[51] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord:
A Scalable Peer-to-peer Lookup Service for Internet Applications. ACM
SIGCOMM Computer Communication Review, 31(4):149–160, 2001.

[52] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D. Kubiatow-
icz. Tapestry: A Resilient Global-Scale Overlay for Service Deployment. Selected
Areas in Communications, IEEE Journal on, 22(1):41–53, 2004.

[53] Li Gong. JXTA: A Network Programming Environment. Internet Computing,
IEEE, 5(3):88–95, 2001.

[54] Extensible Messaging and Presence Protocol. http://en.wikipedia.org/wiki/
XMPP.

123

http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/XMPP
http://en.wikipedia.org/wiki/XMPP

[55] I. Clarke, O. Sandberg, B. Wiley, and T.W Hong. Freenet: A Distributed
Anonymous Information Storage and Retrieval System. In Designing Privacy
Enhancing Technologies, 2001.

[56] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-generation
Onion Router. Technical report, DTIC Document, 2004.

[57] Gnutella. http://en.wikipedia.org/wiki/Gnutella.

[58] S.J. Lee, S. Banerjee, P. Sharma, P. Yalagandula, and S. Basu. Bandwidth-
Aware Routing in Overlay Networks. In INFOCOM 2008. 27th Conference on
Computer Communications. IEEE. IEEE, 2008.

[59] Virtual LAN. http://en.wikipedia.org/wiki/Virtual LAN.

[60] Virtual Private Network. http://en.wikipedia.org/wiki/Virtual private network.

[61] Virtual Private LAN Service. http://en.wikipedia.org/wiki/Virtual Private
LAN Service.

[62] W.D. Laverell, Z. Fei, and J. Griffioen. Isn’t It Time You Had an Emulab? ACM
SIGCSE Bulletin, 40(1):246–250, 2008.

[63] PlanetLab. https://www.planet-lab.org.

[64] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In VINI
Veritas: Realistic and Controlled Network Experimentation. In ACM SIGCOMM
Computer Communication Review, volume 36, pages 3–14. ACM, 2006.

[65] A. Ciuffoletti. Monitoring a Virtual Network Infrastructure. ACM SIGCOMM
Computer Communication Review, 2010.

[66] J. Sommers and P. Barford. An Active Measurement System for Shared
Environments. In Proceedings of the 7th ACM SIGCOMM Conference on
Internet Measurement. ACM, 2007.

[67] G. Liang and B. Yu. Maximum Pseudo Likelihood Estimation in Network
Tomography. Signal Processing, IEEE Transactions on, 51(8):2043–2053, 2003.

[68] Y. Tsang, M. Coates, and R.D. Nowak. Network Delay Tomography. Signal
Processing, IEEE Transactions on, 51(8):2125–2136, 2003.

[69] Y. Tsang, M. Coates, and R. Nowak. Passive Network Tomography Using
EM Algorithms. In Acoustics, Speech, and Signal Processing, 2001. Proceed-
ings.(ICASSP’01). 2001 IEEE International Conference on. IEEE, 2001.

[70] A. Chen, J. Cao, and T. Bu. Network Tomography: Identifiability and Fourier
Domain Estimation. In INFOCOM 2007. Twenty-Sixth Annual Joint Conference
of the IEEE Computer and Communications. IEEE, 2007.

124

http://en.wikipedia.org/wiki/Gnutella
http://en.wikipedia.org/wiki/Virtual_LAN
http://en.wikipedia.org/wiki/Virtual_private_network
http://en.wikipedia.org/wiki/Virtual_Private_LAN_Service
http://en.wikipedia.org/wiki/Virtual_Private_LAN_Service
https://www.planet-lab.org

[71] N.G Duffield and F.L. Presti. Network Tomography from Measured End-to-End
Delay Covariance. IEEE/ACM Transactions on Networking (TON), 12(6):978–
992, 2004.

[72] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu. Network tomography:
recent developments. Statistical science, pages 499–517, 2004.

[73] J.D. Horton and A. López-Ortiz. On the Number of Distributed Measurement
Points for Network Tomography. In Proceedings of the 3rd ACM SIGCOMM
Conference on Internet Measurement. ACM, 2003.

[74] R. Kumar and J. Kaur. Efficient Beacon Placement for Network Tomography. In
Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement.
ACM, 2004.

[75] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. RFC 2205: Resource
ReSerVation Protocol (RSVP). RFC, 1997.

[76] M. Yang, Y. Huang, J. Kim, M. Lee, T. Suda, and M. Daisuke. An End-to-
End QoS Framework with On-Demand Bandwidth Reconfiguration. Computer
Communications, 28(18):2034–2046, 2005.

[77] T. Wolf, J. Griffioen, K.L. Calvert, R. Dutta, G.N. Rouskas, I. Baldine, and
A. Nagurney. Choice as a Principle in Network Architecture. ACM SIGCOMM
Computer Communication Review, 42(4):105–106, 2012.

[78] S. Bhardwaj, L. Jain, and S. Jain. Cloud Computing: A Study of Infrastructure
as a Service (IAAS). International Journal of engineering and information
Technology, 2(1):60–63, 2010.

[79] Platform as a Service. http://en.wikipedia.org/wiki/Platform as a service.

[80] Mehmet Onur Ascigil. Design of a Scalable Path Service for the Internet. PhD
thesis, University of Kentucky, May 2015.

[81] Facebook. http://en.wikipedia.org/wiki/Facebook.

[82] NetFlix. http://en.wikipedia.org/wiki/Netflix.

[83] Youtube. http://en.wikipedia.org/wiki/YouTube.

[84] CAIDA. http://www.caida.org/.

[85] Global Internet Phenomena Report. https://www.sandvine.com/downloads/
general/global-internet-phenomena/2013/2h-2013-global-internet-phenomena-
report.pdf.

[86] L. Qiu, Y.R. Yang, Y. Zhang, and S. Shenker. On Selfish Routing in Internet-
like Environments. In Proceedings of the 2003 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications. ACM,
2003.

125

http://en.wikipedia.org/wiki/Platform_as_a_service
http://en.wikipedia.org/wiki/Facebook
http://en.wikipedia.org/wiki/Netflix
http://en.wikipedia.org/wiki/YouTube
http://www.caida.org/

[87] T. Roughgarden and É. Tardos. How Bad Is Selfish Routing? Journal of the
ACM (JACM), 49(2):236–259, 2002.

[88] R. Keralapura, C. Chuah, N. Taft, and G. Iannaccone. Race Conditions
in Coexisting Overlay Networks. Networking, IEEE/ACM Transactions on,
16(1):1–14, 2008.

[89] Y. Liu, H. Zhang, W. Gong, and D. Towsley. On the Interaction between Overlay
Routing and Underlay Routing. In INFOCOM 2005. Twenty-Fourth Annual
Joint Conference of the IEEE Computer and Communications. IEEE, 2005.

[90] S. Wei and J. Mirkovic. A Realistic Simulation of Internet-scale Events. In
Proceedings of the 1st International Conference on Performance Evaluation
Methodolgies and Tools. ACM, 2006.

126

Vita

• Education

– Xiamen University, Xiamen, Fujian, China, M.S. in Computer Application
Technology, Sep. 2004 – July 2007

– Xiamen University, Xiamen, Fujian, China, B.Eng. in Software Engineer-
ing, Sep. 2000 – July 2004

• Employment History

– University of Kentucky, Lexington, KY, Research Assistant, May. 2008 -
Aug. 2012 & Jan. 2013 – Feb. 2015

– University of Kentucky, Lexington, KY, Teaching Assistant, Aug. 2007 –
May. 2018 & Aug. 2012 – Dec. 2012

• Publications

– X. Wu, J. Griffioen, “Supporting Application-based Route Selection”, In
Proceedings of 23nd International Conference on Computer Communica-
tions and Networks (ICCCN), IEEE, 2014

– X. Wu, J. Griffioen, “Network path advising service for the future
Internet”, In Network Operations and Management Symposium (NOMS),
IEEE, 2012

– J. Griffioen, Z. Fei, H. Nasir, X. Wu, J. Reed, C. Carpenter, “Measuring
Experiments in GENI”, In Computer Networks, 2013

– J. Griffioen, Z. Fei, H. Nasir, X Wu, J. Reed, C. Carpenter, “The design of
an instrumentation system for federated and virtualized network testbeds”,
In Network Operations and Management Symposium (NOMS), IEEE,
2012

– J. Griffioen, Z. Fei, H. Nasir, X. Wu, J. Reed, C. Carpenter, “Teaching with
the Emerging GENI Network”, In Proceedings of the 2012 International
Conference on Frontiers in Education: Computer Science and Computer
Engineering (FECS), 2012

– J. Duerig, R. Ricci, L. Stoller, M. Strum, G. Wong, C. Carpenter, Z. Fei,
J. Griffioen, H. Nasir, J. Reed and X. Wu, “Getting started with GENI:
a user Tutorial”, In ACM SIGCOMM Computer Communication Review,
2012

127

	A NETWORK PATH ADVISING SERVICE
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Desired features of NPAS
	1.1.1 Rating Paths
	1.1.2 Monitoring the Internet
	1.1.3 Collecting End User Feedback

	1.2 Contributions of the Thesis
	1.3 Thesis Organization

	2 Related Work
	2.1 Active and Passive Approaches
	2.2 Network Measurements
	2.2.1 Measuring Network Latency
	2.2.2 Active Bandwidth Measurement
	2.2.3 Passive Bandwidth Measurement
	2.2.4 Application-specific Network Metrics
	2.2.5 Packet-Level Traffic Measurement

	2.3 Monitoring Various Types of Networks
	2.3.1 DNS based Measurement Infrastructure
	2.3.2 Overlay Networks
	2.3.3 Virtual Networks

	2.4 Measuring the End-to-End Path
	2.5 QOS Routing

	3 Future Network Environments
	3.1 Support for Monitoring in the Future
	3.2 Network Topology and Paths
	3.2.1 The NPAS's View of Topology

	3.3 The Role of Routing in the Future
	3.3.1 Finding a Set of Possible Paths
	3.3.2 Specifying Path Queries

	4 A Network Path Advising Service
	4.1 Using NPAS
	4.2 NPAS Features
	4.3 The NPAS System Architecture

	5 The NPAS Service Abstraction
	5.1 The Rating API
	5.2 The Scheduling API
	5.3 The Feedback API

	6 Covering Paths
	6.1 Coverage Metrics
	6.2 What Paths Will Applications Request?
	6.3 How Many Links Should NPAS Monitor?
	6.3.1 Single-Source Monitoring
	6.3.2 Identifying Popular Links for Multiple Sources
	6.3.3 Global (Shared) Monitoring
	6.3.4 Local (Private) Monitoring
	6.3.5 Multi-source Multi-route Monitoring
	6.3.6 Future Traffic Monitoring
	6.3.7 Monitoring for International ASes
	6.3.8 Monitoring for Multiple Traffic Patterns

	6.4 Selecting Monitoring Points
	6.4.1 One AS per Link Monitoring
	6.4.2 Two ASes per Link Monitoring
	6.4.3 Monitoring Point Selection for Multi-route Monitoring
	6.4.4 Monitoring Point Selection for International ASes

	6.5 Network Overhead of Covering Popular Paths

	7 Collecting Path Information
	7.1 Changing the Monitoring Points
	7.2 Gathering and Distributing Dynamic Path Measurements
	7.3 Getting Path Measurements From Feedback
	7.3.1 Handling Feedback

	8 Rating Paths
	8.1 Storing Path Information
	8.1.1 Caching the Link/Path information
	8.1.2 Privacy Issues

	8.2 Making Path Recommendations
	8.3 Handling Competing Requests
	8.4 Path Advising Examples

	9 Simulation
	9.1 Designing the Simulation System
	9.1.1 Simulating Network Traffic
	9.1.2 Simulating the Applications' Requests
	9.1.3 Simulating NPAS

	9.2 Simulation Results
	9.2.1 Throughput Improvement
	9.2.2 Latency Improvement
	9.2.3 Flow Coverage and Correctness
	9.2.4 NPAS Stability
	9.2.5 Reduced Network Overhead with Local Request Servers
	9.2.6 Benefits of Using Feedback

	10 Conclusions
	10.1 Future Work

	Bibliography
	Vita

