9 research outputs found

    Measurement-device-independent quantum key distribution with uncharacterized qubit sources

    Get PDF
    Measurement-device-independent quantum key distribution (MDIQKD) is proposed to be secure against any possible detection attacks. The security of the original proposal relies on the assumption that the legitimate users can fully characterize the encoding systems including sources. Here, we propose a MDIQKD protocol where we allow uncharacterized encoding systems as long as qubit sources are used. A security proof of the MDIQKD protocol is presented that does not need the knowledge of the encoding states. Simulation results show that the scheme is practical

    Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources

    Get PDF
    In the postprocessing of quantum key distribution, the raw key bits from the mismatched-basis measurements, where two parties use different bases, are normally discarded. Here, we propose a postprocessing method that exploits measurement statistics from mismatched-basis cases, and prove that incorporating these statistics enables uncharacterized qubit sources to be used in the measurement-device-independent quantum key distribution protocol and the Bennett-Brassard 1984 protocol, a case which is otherwise impossible.Comment: Part of this article contains a significant improvement over arXiv:1309.381

    Mechanistic study of visible light-driven CdS or g-C<sub>3</sub>N<sub>4</sub>-catalyzed C–H direct trifluoromethylation of (hetero)arenes using CF<sub>3</sub>SO<sub>2</sub>Na as the trifluoromethyl source

    Get PDF
    The mild and sustainable methods for C–H direct trifluoromethylation of (hetero)arenes without any base or strong oxidants are in extremely high demand. Here, we report that the photo-generated electron-hole pairs of classical semiconductors (CdS or g-C3N4) under visible light excitation are effective to drive C–H trifluoromethylation of (hetero)arenes with stable and inexpensive CF3SO2Na as the trifluoromethyl (TFM) source via radical pathway. Either CdS or g-C3N4 propagated reaction can efficiently transform CF3SO2Na to [rad]CF3 radical and further afford the desired benzotrifluoride derivatives in moderate to good yields. After visible light initiated photocatalytic process, the key elements (such as F, S and C) derived from the starting TFM source of CF3SO2Na exhibited differential chemical forms as compared to those in other oxidative reactions. The photogenerated electron was trapped by chemisorbed O2 on photocatalysts to form superoxide radical anion (O2[rad]−) which will further attack [rad]CF3 radical with the generation of inorganic product F− and CO2. This resulted in a low utilization efficiency of [rad]CF3 (&lt;50%). When nitro aromatic compounds and CF3SO2Na served as the starting materials in inert atmosphere, the photoexcited electrons can be directed to reduce the nitro group to amino group rather than being trapped by O2. Meanwhile, the photogenerated holes oxidize SO2CF3− into [rad]CF3. Both the photogenerated electrons and holes were engaged in reductive and oxidative paths, respectively. The desired product, trifluoromethylated aniline, was obtained successfully via one-pot free-radical synthesis.</p

    Intestinal Microbiome-Metabolome Responses to Essential Oils in Piglets

    Get PDF
    This study investigated the effects of dietary essential oils (EOs) on intestinal microbial composition and metabolic profiles in weaned piglets. The piglets were fed the same basal diet supplemented with EOs (EO) or without EOs (Con) in the current study. The results showed that the body weight gain was significantly increased, while the diarrhea incidence was significantly reduced in the EO group. In addition, EOs could modify the intestinal microbial composition of weaned piglets. The relative abundances of some beneficial bacterial species such as Bacilli, Lactobacillales, Streptococcaceae, and Veillonellaceae were significantly increased in the EO group. Metabolomics analysis indicated that protein biosynthesis, amino acid metabolism, and lipid metabolism were enriched in the EO group. And correlation analysis demonstrated that some gut bacterial genera were highly correlated with altered gut microbiota-related metabolites. Taken together, this study indicated that dietary EOs not only altered microbial composition and function but modulated the microbial metabolic profiles in the colon, which might help us understand EOs’ beneficial effects on intestinal health of weaned piglets

    Exogenous Fecal Microbiota Transplantation from Local Adult Pigs to Crossbred Newborn Piglets

    No full text
    This study was conducted to investigate the effect of exogenous fecal microbiota transplantation on gut bacterial community structure, gut barrier and growth performance in recipient piglets. Twelve litters of Duroc × Landrace × Yorkshire piglets of the same birth and parity were weighed and divided into two groups. One group (recipient piglets) was inoculated orally with fecal microbiota suspension of healthy adult Jinhua pigs daily from day 1 to day 11. The other (control) was given orally the same volume of sterile physiological saline at the same time. The experiment lasted 27 days. The results showed that the relative abundance of Firmicutes, Prevotellaceae, Lachnospiraceae, Ruminococcus, Prevotella, and Oscillospira in the colon of recipient piglets was increased. Proteobacteria, Fusobacteriaceae, Clostridiaceae, Pasteuriaceae, Alcaligenaceae, Bacteroidaceae, Veillonellaceae, Sutterella, Escherichia, and Bacteroides in the colon of recipient piglets were decreased. An average daily weight gain of recipient piglets was increased, and diarrhea incidence of the recipient was decreased during the trial. Intestinal morphology and tight junction barrier of recipient piglets were improved. The optical density of sIgA+ cells, the number of goblet cells and relative expressions of MUC2 in the intestinal mucosa of recipient piglets were enhanced. Protein expressions of β-defensin 2 and mRNA expressions of TLR2 and TLR4 in the intestinal mucosa of recipient piglets were also increased. These findings supported that the exogenous fecal microbiota had significant effects on animal’s growth performance, intestinal barrier function, and innate immune via modulating the composition of the gut microbiota

    Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources

    No full text
    In the postprocessing of quantum key distribution, the raw key bits from the mismatched-basis measurements, where two parties use different bases, are normally discarded. Here, we propose a postprocessing method that exploits measurement statistics from mismatched-basis cases and prove that incorporating these statistics enables uncharacterized qubit sources to be used in the measurement-device-independent quantum key distribution protocol and the Bennett-Brassard 1984 protocol, which is otherwise impossible
    corecore