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Measurement-device-independent quantum key distribution (MDIQKD) is proposed to be secure against any
possible detection attacks. The security of the original proposal relies on the assumption that the legitimate users
can fully characterize the encoding systems including sources. Here, we propose a MDIQKD protocol where
we allow uncharacterized encoding systems as long as qubit sources are used. A security proof of the MDIQKD
protocol is presented that does not need the knowledge of the encoding states. Simulation results show that the
scheme is practical.
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I. INTRODUCTION

Quantum key distribution (QKD) [1,2] allows two distant
parties (Alice and Bob) to share secret key bits. In the most
commonly implemented QKD protocol, BB84 [1], Alice ran-
domly encodes her qubits into one of the four quantum states
|0〉, |1〉, |+〉 = (|0〉 + |1〉)/√2, and |−〉 = (|0〉 − |1〉)/√2,
where |0〉 and |1〉 represent the two eigenstates in the Z

basis and |+〉 and |−〉 represent the two eigenstates in the
X basis, respectively. Then, she transmits photons to Bob
through a quantum channel which may be controlled by an
eavesdropper, Eve. A key can be generated by postprocessing
the measurement results [3–5]. The security of BB84 can be
proved by considering the equivalence between BB84 and an
entanglement distillation protocol (EDP). Many other QKD
protocols are also proven to be secure with similar techniques
[6–8]. Meanwhile, tremendous progress in experimental QKD
has also been achieved in the past decade [9–18]. For a review
of the subject, one can refer to Ref. [19] and references therein.

Despite the proven security in theory, Eve may still be able
to crack practical QKD systems by exploiting imperfections
in actual implementations. Quantum hacking strategies, taking
advantage of practical loopholes, were studied in recent
years, such as fake-state attack [20,21], time-shift attack
[22,23], phase-remapping attack [24,25], detector-blinding
attack [26,27], and unambiguous state discrimination (USD)
attack [28]. In order to close all possible loopholes existing in
practical QKD systems, device-independent (DI) QKD [29,30]
protocols have been proposed, whose security does not rely on
the details of implementation devices but on the violation of
Bell’s inequalities or other nonlocality tests. The security is
only built on a few reasonable assumptions such as having
good random numbers and trusted user operation systems.
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Unfortunately, DIQKD requires very high detection efficiency
and low channel loss to yield secure keys. A recent DIQKD
scheme with local Bell test [31] overcomes the channel loss
limitation and extends the achievable distance to 17 km
using current experimental parameters. However, this is still
a short distance for practical interest and, so far, no DIQKD
experiment has been demonstrated.

A close examination on hacking strategies indicates that
most loopholes exist in the detection part of QKD sys-
tems [20–23,26,27]. Along this line, QKD protocols against
detection loopholes are proposed [32,33]. Like DIQKD,
unfortunately, these protocols still require high performance
of implementation devices. In 2012, Lo et al. presented
their seminal work, measurement-device-independent QKD
(MDIQKD) [34], which is practical and is immune to all
possible detector side channel attacks (see also Ref. [35]).
Recently, a few experimental demonstrations of MDIQKD
have been performed [36–39]. Secret key generation with
MDIQKD over a distance of 50 km has been shown [38], which
is significantly longer than the achievable distance of DIQKD.

In MDIQKD, Alice and Bob each sends their encoded
qubits to a measurement unit (MU), controlled by an untrusted
party Eve, who might collaborate with Eve, to perform a Bell-
state measurement (BSM). A secure key can be established
between Alice and Bob given Eve’s announcements of the
BSM results. The disadvantage of the original MDIQKD
in comparison to DIQKD is that the security of MDIQKD
relies on the assumption that Alice and Bob are able to
characterize their encoding systems. For qubit sources, ideal
four BB84 encoding states {|0〉,|1〉,|+〉,|−〉} are assumed. For
coherent-state sources, the decoy-state method is assumed
[40–42]. In practice, such requirements might not be strictly
satisfied. For example, two imperfect encoding systems could
be misaligned. In this work, we remove the security assumption
that Alice and Bob must characterize their encoding states for
MDIQKD. We show that by modifying the original MDIQKD
and using qubit sources, one can use uncharacterized encoding
systems. When Alice (Bob) selects to output a state with index
x (y), her (his) encoding device emits a mixed-qubit state ρA,x

(ρB,y) to Eve. In our framework, the initial joint state with
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FIG. 1. A schematic diagram for the QMDIQKD protocol. SPS:
single-photon source; BS: beam splitter; M: mirror; PM: phase
modulator; BSM: Bell-state measurement, which is an untrusted
device and may be controlled by Eve; ϕ0, ϕ1, ϕ2, ϕ3 (ϕ′

0, ϕ′
1, ϕ′

2,
ϕ′

3) represent Alice’s (Bob’s) four encoding choices.

Eve’s system is

ρA,x ⊗ ρB,y ⊗ ρE for all x,y,

where Eve’s state ρE is independent of x and y. This
excludes the case of a joint encoding device where the state
is ρAB,x,y ⊗ ρE and the case of hidden classical variables
(unknown to Alice and Bob but known to Eve). The latter case
is often considered as “black boxes” in DIQKD papers [29,30],
and the state is

∑
λ p(λ)ρλ

A,x ⊗ ρλ
B,y ⊗ ρλ

E, in which p(λ)
represents the probability distribution of the hidden variable
λ. Similarly, the case of preshared entanglements with Eve
is excluded in our framework. Therefore, our encoding
devices emit mixed-qubit states, which are uncharacterized
to Alice and Bob. Eve may learn about the encoding states
by only performing quantum operations on them. There are
no other means for her to obtain information. The additional
requirement of devices we put here is that the BSM is able to
identify at least two of the four Bell states. Denote the modified
protocol as qubit-MDIQKD (QMDIQKD). The QMDIQKD
protocol may be particularly relevant to the situation that
Alice and Bob can make sure their encoding states are two
dimensional (i.e., the phase encoding system) while they do
not trust the accuracy of their phase modulators.

The rest of the paper is organized as follows. In Sec. II, we
present the QMDIQKD protocol with qubit sources, whose
security is proven in Sec. III for the case of pure-state sources.
The security of the general (mixed-) qubit source case is given
in Sec. IV. In Sec. V, we present simulation results of the
QMDIQKD protocol, comparing to the original one. Finally,
we conclude in Sec. VI with discussions.

II. MODIFIED MDIQKD PROTOCOL

Similar to the original MDIQKD, Alice and Bob have
symmetric encoding systems in the QMDIQKD protocol. They
send their encoded qubits to Eve for BSM, as shown in Fig. 1.
Here, without loss of generality, we assume a phase encoding
scheme is used. Alice (Bob) can choose different phases ϕ0,
ϕ1, ϕ2, ϕ3 (ϕ′

0, ϕ′
1, ϕ′

2, ϕ′
3) to perform the encoding step. Then,

Eve performs a BSM on the incoming states and announces
results to Alice and Bob.

We plan to analyze its security with the EDP method
[4,5], which is widely used for security proofs of QKD. The
essence of this method is to convert the QMDIQKD protocol
into an equivalent EDP, then obtain the relation between the
phase-error rate and the bit-error rate, which can be estimated

in experiments. In this section, we give the equivalent EDP
version of QMDIQKD and focus on a description where
the encoding states are pure (extension to the mixed-state
description is trivial):

(1) Alice and Bob prepare N pairs of entangled states,

|φ+〉AC = |0〉A|ϕ0〉C + |1〉A|ϕ1〉C + |2〉A|ϕ2〉C + |3〉A|ϕ3〉C,

|φ+〉BD = |0〉B |ϕ′
0〉D + |1〉B |ϕ′

1〉D + |2〉B |ϕ′
2〉D + |3〉B |ϕ′

3〉D,

(1)

respectively, where normalization factors are omitted. Sub-
scripts A and B denote Alice’s and Bob’s classical key bits,
respectively, of which values 0 and 1 represent encodings in
basis 0, and values 2 and 3 represent encodings in basis 1. The
states |ϕx〉C and |ϕ′

x〉D (x = 0,1,2,3) are Alice’s and Bob’s
uncharacterized encoding states, respectively, to be sent to the
MU and in general they are not orthogonal to each other. Alice
and Bob ensure that |ϕx〉C and |ϕ′

x〉D are fixed pure states in
a two-dimensional Hilbert (qubit) space but do not know the
details. Later, we will extend the results to general mixed-qubit
systems. Here, we describe Alice and Bob’s encoding systems
in an equivalent measurement-based way. By measuring her
only half of the system, Alice collapses the system C to one
of |ϕi〉C with i = 0,1,2,3 with equal probabilities, which is
equivalent to saying that Alice prepares the system C into
four states with equal probabilities. The same argument holds
for Bob. Hence, Eq. (1) shows a mathematical equivalent
description of Alice’s and Bob’s encoding systems.

(2) Alice and Bob send the states, labeled by C and
D, respectively, to Eve who announces her BSM result.
There are three possible outcomes: BSM failure; a successful
measurement result in either of the Bell states

|φ+〉CD = (|0〉C |0〉D + |1〉C |1〉D)/
√

2, (2)

|ψ+〉CD = (|0〉C |1〉D + |1〉C |0〉D)/
√

2. (3)

One must note that Eve might not honestly announce her mea-
surement results. The beauty of MDIQKD [34] is that the se-
curity does not depend on whether the measurement results are
faithfully obtained by Alice and Bob. Another important point
is that it is enough to assume that the MU only needs to identify
one of the Bell states in the original MDIQKD, whereas in the
QMDIQKD, at least two Bell states need to be distinguished.

(3) After receiving Eve’s message, Alice and Bob perform
bit sift: discarding bits when Eve announces failed BSM
(z = 0). Then, they project systems A and B in Eq. (1) onto
|0〉〈0| + |1〉〈1|,|2〉〈2| + |3〉〈3|, which correspond to bases 0
and 1, respectively. Then, they perform basis sift: discarding
bits when their systems collapse into different bases. By
sacrificing certain bits for error testing,1 they can then
deduce a conditional probability distribution p(z|x,y) [where
z = 0,1,2 stands for Eve’s announcements] failure, Eqs. (2)
or (3), respectively; x and y (x,y ∈ {0,1,2,3}) represent the
states of systems A and B.

(4) Finally, Alice and Bob perform EDP to systems
A and B and obtain maximally entangled Bell states

1An alternative way to do that is by performing error verification
after error correction [43,44].
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TABLE I. List of conditional probabilities p(z|x,y) for the
case where Alice and Bob choose four BB84 states with equal
probabilities. Only the cases where they choose the same basis are
considered. No loss is considered.

�����z
x,y

0,0 0,1 1,0 1,1 2,2 2,3 3,2 3,3

0 1/2 1/2 1/2 1/2 0 1 1 0
1 1/2 0 0 1/2 1/2 0 0 1/2
2 0 1/2 1/2 0 1/2 0 0 1/2

|φ+θ 〉AB = (|0〉A|0〉B + eiθ |1〉A|1〉B)/
√

2, where secure-key
bits can be extracted.

Let us first take a look at the original MDIQKD case
where Alice and Bob each sends four BB84 states with
equal probabilities. The conditional probabilities of the
measurement result by a lossless MU are listed in Table I,
from where one can see that there is a 50% intrinsic loss for
the original MDIQKD scheme when two Bell states can be
distinguished. In the case of xy = 01,10 and z = 2, a bit flip
is operated on either Alice’s or Bob’s side.

In step 2, it is crucial in the QMDIQKD protocol to assume
that the MU can distinguish at least two Bell states. In the
following, we will show that the MDIQKD protocol using the
uncharacterized qubit encoding system is insecure if only one
Bell state can be measured by the MU, or z ∈ {0,1}. In this
case, the row of z = 2 in Table I will be emerged to the one of
z = 0. Now, let us consider the following two scenarios.

(1) Alice’s and Bob’s encoding systems emit four perfect
BB84 states. Then, in the bit-sift procedure, Alice and Bob
will discard the cases of z = 0 and 2 as listed in Table I. Thus,
the key bits remain only when Alice and Bob send out the
same states.

(2) Alice and Bob’s encoding systems emit states from a
set of two orthogonal states |0〉 and |1〉 regardless of their
basis choices. Obviously, no secure key can be generated
from this case since Eve can simply perform a projection
measurement on the qubits sent out by Alice and Bob to get
the full information.

From Alice’s and Bob’s points of view, they can not
distinguish above two scenarios from their observed results.
Thus, such a scheme is not secure. It is not hard to verify that
the same conclusion holds when the MU projects onto any
other Bell state instead of Eq. (2).

Moreover, note that not any two of Bell states will work for
the QMDIQKD protocol. From the attack mentioned above,
one can see that it is critical for a joint state of Alice and Bob
to be able to yield two Bell-state measurement results when
they choose the same basis. Table II shows such possibilities
for each case of x,y and four Bell states. One can see that
neither the pair |00 + 11〉 and |01 − 10〉 nor the pair |01 + 10〉
and |00 − 11〉 can be used for the QMDIQKD protocol.

III. SECURITY AGAINST COLLECTIVE ATTACKS AND
KEY-RATE LOWER BOUND: PURE-STATE CASE

Following the similar argument used in Ref. [5], we design
an EDP that is equivalent to the QMDIQKD protocol. Given
that the initial states of Alice’s, Bob’s, and Eve’s ancillas are

TABLE II. The relation between the states depending on x,y

values and four Bell states: � means there is overlap between the
state xy and the corresponding Bell states, while × means the two
states are orthogonal.

�������x,y
Bell state

|00 + 11〉 |01 − 10〉 |01 + 10〉 |00 − 11〉
0,0 � × × �
1,1 � × × �
0,1 × � � ×
1,0 × � � ×
2,2 � × � ×
3,3 � × � ×
2,3 × � × �
3,2 × � × �

separable, we first define Eve’s collective attack by a unitary
transformation:

UEve|ϕx〉C |ϕ′
y〉D|e〉Ea|0〉M

=
√

p(0|x,y)|�xy0〉E|0〉M +
√

p(1|x,y)|�xy1〉E|1〉M
+

√
p(2|x,y)|�xy2〉E|2〉M, (4)

where x,y = {0,1,2,3}, |e〉Ea is Eve’s arbitrary ancilla, |0〉M is
the message which will be sent to Alice and Bob, and |�xy0〉E ,
|�xy1〉E , and |�xy2〉E are all normalized Eve’s arbitrary
quantum states for Eve’s ancilla and photons C, D. Here,
we emphasize that our collective attack modeled by Eq. (4)
has taken the basis-independent attack and basis-dependent
attack [45] into account. The basis-independent attack is a
situation where the density matrix of the states transmitted in
the channel when Alice’s and Bob’s bases choices are both
0 is the same as the case of basis 1. The basis-dependent
attack is a situation where the two density matrices are
different. The basis dependence can be measured by fidelity.
In general, for basis-dependent attacks, Eve may obtain basis
information through certain measurements and then adopt
different operations accordingly. Any measurement that Eve
may utilize to learn the basis and the followup operations
can be seen as part of an extended unitary transformation on
Alice’s and Bob’s encoding states and her ancilla given by
Eq. (4).

A. Example: General four-dimensional case

Before proceeding, we first prove that when two-
dimensional photon pairs C and D are general four-
dimensional quantum states |ϕxy〉CD, the protocol will not
be secure. Generally, we assume when Alice’s input is x

and Bob’s input is y, the state is |ϕxy〉CD. Let us consider a
counterexample, where

〈ϕ00|ϕ11〉CD = 0,

〈ϕ00|ϕ01〉CD = −1/
√

2,

|ϕ01〉CD = |ϕ10〉CD,

|ϕ22〉CD = |ϕ33〉CD = |ϕ00〉CD + |ϕ01〉CD, (5)

|ϕ23〉CD = |ϕ32〉CD,
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TABLE III. QMDIQKD: probability table for bases 0 and 1 for a
particular joint sender.

�����z
x,y

0,0 0,1 1,0 1,1 2,2 2,3 3,2 3,3

0 1/2 1/2 1/2 1/2 0 1 1 0
1 1/2 0 0 1/2 1/2 0 0 1/2
2 0 1/2 1/2 0 1/2 0 0 1/2

〈ϕ23|ϕ00〉CD = 〈ϕ23|ϕ11〉CD

= 〈ϕ23|ϕ01〉CD = 〈ϕ23|ϕ22〉CD = 0.

Obviously, the above states are defined in a four-dimensional
Hilbert space. Define a conditional probability p(z|x,y) to
be the probability for the BSM’s result z conditioned on
the values set by Alice and Bob, x,y. In the case without
eavesdropping, Alice and Bob will verify that their conditional
probabilities p(z|x,y) are as shown in Table III. These
conditional probabilities can be satisfied by the following
attack strategy:

UEve|ϕxy〉CD|0〉Ea|0〉M = (|�xy0〉E|0〉M + |�xy1〉E |1〉M )/
√

2

when x = y = 0 or x = y = 1,

UEve|ϕxy〉CD|0〉Ea|0〉M = (|�xy0〉E|0〉M + |�xy2〉E |2〉M )/
√

2

when x = 1,y = 0 or x = 0,y = 1,

UEve|ϕ23〉CD|0〉Ea|0〉M = |�230〉E|0〉M,

|�000〉E = −|�010〉E.

When Alice and Bob declare their basis choices, Eve can know
all key values in basis 0 since |�001〉E and |�111〉E can be
orthogonal. One can verify that the same probability tables are
obtained when the senders of Alice and Bob emit perfect BB84
states without any channel error. Therefore, it is not possible
for Alice and Bob to distinguish whether their senders transmit
genuine BB84 states (in which security can hold) or this set
of general four-dimensional quantum states |ϕxy〉CD (in which
security can not hold). Thus, to avoid this case, we restrict
|ϕxy〉CD = |ϕx〉C |ϕ′

y〉D . Before discussing the general case, we
first give a simple example for the case that Alice and Bob
observe a set of specific probabilities p(z|x,y).

B. Example: Ideal case

Let us prove the security of the QMDIQKD protocol
by considering an ideal case where no disturbance is
allowed in the quantum channels. In this case, Alice and
Bob would find that p(0|0,0) = p(1|0,0) = p(0|1,1) =
p(1|1,1) = p(0|0,1) = p(2|0,1) = p(0|1,0) = p(2|1,0) =
p(1|2,2) = p(2|2,2) = p(1|3,3) = p(2|3,3) = 1/2, and
p(0|2,3) = p(0|3,2) = 1. Then, from Eve’s collective attack
(described by UEve) point of view, she needs to satisfy the
following conditions:

UEve|ϕ0〉C |ϕ′
0〉D|e〉Ea|0〉M

= 1√
2
|�000〉E|0〉M + 1√

2
|�001〉E |1〉M,

UEve|ϕ1〉C |ϕ′
1〉D|e〉Ea|0〉M

= 1√
2
|�110〉E|0〉M + 1√

2
|�111〉E|1〉M,

UEve|ϕ0〉C |ϕ′
1〉D|e〉Ea|0〉M

= 1√
2
|�010〉E|0〉M + 1√

2
|�012〉E|2〉M,

UEve|ϕ1〉C |ϕ′
0〉D|e〉Ea|0〉M

= 1√
2
|�100〉E|0〉M + 1√

2
|�102〉E|2〉M (6)

when Alice and Bob prepare the 0 basis, and

UEve|ϕ2〉C |ϕ′
2〉D|e〉Ea|0〉M

= 1√
2
|�221〉E|1〉M + 1√

2
|�222〉E|2〉M,

UEve|ϕ3〉C |ϕ′
3〉D|e〉Ea|0〉M

= 1√
2
|�331〉E|1〉M + 1√

2
|�332〉E|2〉M,

UEve|ϕ2〉C |ϕ′
3〉D|e〉Ea|0〉M = |�230〉E |0〉M,

UEve|ϕ3〉C |ϕ′
2〉D|e〉Ea|0〉M = |�320〉E |0〉M (7)

when Alice and Bob prepare the 1 basis. This definition is just
a special case of Eq. (4). We again assume that Alice and Bob
do not know the details of |ϕx〉C and |ϕ′

y〉D (x,y = 0,1,2,3).
Recall that |ϕx〉C and |ϕ′

y〉D are both in the two-dimensional
Hilbert space and they are disjoint (|ϕxy〉CD = |ϕx〉C |ϕ′

y〉D)
(see previous Sec. III A), and we may arbitrarily assign a phase
to each of them. Thus,

|ϕ2〉C = C20|ϕ0〉C + C21|ϕ1〉C,

|ϕ3〉C = C30|ϕ0〉C + C31e
iθ |ϕ1〉C,

|ϕ′
2〉D = C ′

20|ϕ′
0〉D + C ′

21|ϕ′
1〉D,

|ϕ′
3〉D = C ′

30|ϕ′
0〉D + C ′

31e
iθ ′ |ϕ′

1〉D

(8)

must hold for some complex numbers Cxy and C ′
xy . By

considering that |ϕ0〉C and |ϕ1〉C can have some trivial overall
phases, we can assume C20 and C21 are both non-negative real
numbers. Next, by omitting the trivial overall phase of |ϕ3〉C ,
we can simply assume that C30 and C31 are also non-negative
real numbers. In the same way, C ′

xy are also non-negative real
numbers. Substitute Eqs. (6) to the last two equations of (7),
and we obtain

C30C
′
20|�001〉E + C31C

′
21e

iθ |�111〉E = 0,

C30C
′
21|�012〉E + C31C

′
20e

iθ |�102〉E = 0,

C20C
′
30|�001〉E + C21C

′
31e

iθ ′ |�111〉E = 0,

C20C
′
31|�012〉E + C21C

′
30e

−iθ ′ |�102〉E = 0.

(9)

From the above equation, one can verify that if any one
of {Cxy,C

′
xy |x = 2,3,y = 0,1} equals to 0, Eq. (7) and the

normalized conditions of |ϕ2〉C, |ϕ′
2〉D, |ϕ3〉C, |ϕ′

3〉D can not
be all satisfied. Hence, Cxy �= 0, C ′

xy �= 0, and furthermore we
have

|�001〉E + eiθ |�111〉E = 0. (10)
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Obviously, Eq. (10) makes sure that Eve has no information
on Alice’s and Bob’s bits in basis 0 when Eve announces the
message |1〉M . Therefore, the above-observed probabilities can
promise Alice and Bob to share secure-key bits even when their
encoding states are not characterized. In other words, we have
proven the security of the QMDIQKD protocol in the case of
no error and no loss.

C. Proof: General pure-qubit case

To begin our analysis, without loss of generality, we
can assume in Eq. (4) |�xyz〉E = ∑

n γxyzn|n〉E , in which
|n〉E are a set of normalized orthogonal bases of Eve’s
states, and complex number γxyzn =E 〈n|�xyz〉E , satisfying

∑
n |γxyzn|2 = 1. Thus, we can give the density matrix for the

case that Alice and Bob both select basis 0:

ρ = 1

p(1|0,0) + p(1|1,1) + p(1|0,1) + p(1|1,0)

×
∑

n

P {
√

p(1|0,0)γ001n|0〉A|0〉B

+
√

p(1|1,1)γ111n|1〉A|1〉B +
√

p(1|0,1)γ011n|0〉A|1〉B
+

√
p(1|1,0)γ101n|1〉A|0〉B}, (11)

in which P {|x〉} = |x〉〈x|. The aim of this EDP is to obtain
perfect Bell states |φ−θ 〉AB = (|0〉A|0〉B − e−iθ |1〉A|1〉B)/

√
2.

Accordingly, we can define the bit-error rate eb and phase-error
rate ep under basis 0:

eb = A〈0|B〈1|ρ|1〉B |0〉A +A 〈1|B〈0|ρ|0〉B |1〉A = p(1|0,1) + p(1|1,0)

p(1|0,0) + p(1|1,1) + p(1|0,1) + p(1|1,0)
, (12)

ep = AB〈φ+θ |ρ|φ+θ 〉AB +AB 〈ψ+θ |ρ|ψ+θ 〉AB (13)

=
∑

n |√p(1|0,0)γ001n + eiθ
√

p(1|1,1)γ111n|2 + ∑
n |eiθ

√
p(1|0,1)γ011n + √

p(1|1,0)γ101n|2
2[p(1|0,0) + p(1|1,1) + p(1|0,1) + p(1|1,0)]

, (14)

in which |φ+θ 〉AB = (|0〉A|0〉B + e−iθ |1〉A|1〉B)/
√

2 and |ψ+θ 〉AB = (e−iθ |0〉A|1〉B + |1〉A|0〉B)/
√

2. The task is to find a way to
estimate an effective upper bound of ep. Before proceeding, we remark that we just focus on the ep and final key-bits rate for the
0 basis for simplicity, and thus we do not need to calculate the density matrix for the 1 basis. But, the ep of this 0 basis must be
related to some probabilities of the 1 basis, such as p(1|2,3). Now, we begin to detail how to obtain an upper bound of ep.

We substitute the relations (8) into Eq. (4) to obtain the following constraints:

Cx0C
′
y0

√
p(z|0,0)|�00z〉E+Cx0C

′
y1e

iaθ ′√
p(z|0,1)|�01z〉E + Cx1C

′
y0e

ibθ
√

p(z|1,0)|�10z〉E + Cx1C
′
y1e

i(aθ ′+bθ)
√

p(z|1,1)|�11z〉E
=

√
p(z|x,y)|�xyz〉E, (15)

in which x,y = {0,1,2,3}, z = {0,1,2}, a = 0 when y �= 3, a = 1 when y = 3, b = 0 when x �= 3, and b = 1 when x = 3.
Considering that |�xyz〉E can be spanned by a set of basis |n〉E and with Eq. (15), we obtain∑

n

|C30C
′
20

√
p(1|0,0)γ001n + C31C

′
21

√
p(1|1,1)eiθγ111n|2 � [

√
p(1|3,2) + C30C

′
21

√
p(1|1,0) + C31C

′
20

√
p(1|0,1)]2 � ξ,

∑
n

|C30C
′
21

√
p(2|0,1)γ012n + C31C

′
20

√
p(2|1,0)eiθγ102n|2 � [

√
p(2|3,2) + C30C

′
20

√
p(2|0,0) + C31C

′
21

√
p(2|1,1)]2 � ζ.

(16)

Note that |ϕx〉C must be normalized, and thus we have

C2
30 + C2

31 + 2C30C31Re
(
eiθ
C 〈ϕ0|ϕ1〉C

) = 1,
(17)

C ′2
20 + C ′2

21 + 2C ′
20C

′
21Re(D〈ϕ′

0|ϕ′
1〉D) = 1,

where Re(x) represents the real part of complex number x. From Eq. (4), it is easy to verify that∣∣Re
(
eiθ
C 〈ϕ0|ϕ1〉C

)∣∣ �
√

p(0|1,0)p(0|0,0) +
√

p(1|1,0)p(1|0,0) +
√

p(2|1,0)p(2|0,0) � χ,

|Re(D〈ϕ′
0|ϕ′

1〉D)| �
√

p(0|0,1)p(0|0,0) +
√

p(1|0,1)p(1|0,0) +
√

p(2|0,1)p(2|0,0) � χ ′.
(18)

From constraints (16), we also know that

[C30C
′
20

√
p(1|0,0) − C31C

′
21

√
p(1|1,1)]2 � ξ,

[C30C
′
21

√
p(2|0,1) − C31C

′
20

√
p(2|1,0)]2 � ζ

(19)

easily. Assuming that one obtains C30, C31, C ′
20, and C ′

21 satisfying the above constraints, the only remaining task is to find the
maximum of

∑
n |√p(1|0,0)γ001n + √

p(1|1,1)eiθγ111n|2. By observing the first inequality of (16) and with the help of triangle
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inequality and Cauchy-Schwarz inequality, we have

ξ �
∑

n

[C30C
′
20|

√
p(1|0,0)γ001n +

√
p(1|1,1)eiθγ111n| − |C30C

′
20 − C31C

′
21|

√
p(1|1,1)|γ111n|]2

= C2
30C

′2
20

∑
n

|
√

p(1|0,0)γ001n + eiθ
√

p(1|1,1)γ111n|2 + (C30C
′
20 − C31C

′
21)2p(1|1,1)

− 2C30C
′
20|C30C

′
20 − C31C

′
21|

√
p(1|1,1)

∑
n

|
√

p(1|0,0)γ001n + eiθ
√

p(1|1,1)γ111n||γ111n|

� C2
30C

′2
20

∑
n

|
√

p(1|0,0)γ001n +
√

p(1|1,1)eiθγ111n|2 + (C30C
′
20 − C31C

′
21)2p(1|1,1)

− 2C30C
′
20|C30C

′
20 − C31C

′
21|

√
p(1|1,1)

√∑
n

|
√

p(1|0,0)γ001n + eiθ
√

p(1|1,1)γ111n|2

=
⎛
⎝C30C

′
20

√∑
n

|
√

p(1|0,0)γ001n +
√

p(1|1,1)eiθγ111n|2 − |C30C
′
20 − C31C

′
21|

√
p(1|1,1)

⎞
⎠

2

. (20)

Therefore, we obtain∑
n

|
√

p(1|0,0)γ001n +
√

p(1|1,1)eiθγ111n|2 � [
√

ξ + |C30C
′
20 − C31C

′
21|

√
p(1|1,1)]2

C2
30C

′2
20

. (21)

Furthermore, by the same way, we can obtain that

∑
n

|
√

p(1|0,0)γ001n +
√

p(1|1,1)eiθγ111n|2 � [
√

ξ + |C30C
′
20 − C31C

′
21|

√
p(1|0,0)]2

C2
31C

′2
21

. (22)

Combining constraints (21) and (22), we have∑
n

|
√

p(1|0,0)γ001n +
√

p(1|1,1)eiθγ111n|2

� min
{

maxC,C ′

{
[
√

ξ + |C30C
′
20 − C31C

′
21|

√
p(1|1,1)]2

C2
30C

′2
20

}
maxC,C ′

{
[
√

ξ + |C30C
′
20 − C31C

′
21|

√
p(1|0,0)]2

C2
31C

′2
21

}}
� ε, (23)

in which maxC,C ′ means searching over all C30, C31, C ′
20,

and C ′
21 satisfying constraints (17) and (19), and max{a,b}

(min{a,b}) yields the larger (smaller) one of a and b. Although
finding an analytical expression of ε may be difficult, one
can get ε with numerical methods. When ε is obtained, the
phase-error rate is given by

ep � [
√

p(1|0,1) + √
p(1|1,0)]2 + ε

2[p(1|0,0) + p(1|1,1) + p(1|0,1) + p(1|1,0)]
. (24)

One should note that Eq. (24) requires that C30C
′
20 and C31C

′
21

can not be both zero. If the constraints (17) and (19) allow
C30C

′
20 and C31C

′
21 to be both zero, ep can take on an arbitrary

value.2 The secure-key rate is given by

R = 1 − H (eb) − H (ep), (25)

where H (x) = −x ln x − (1 − x) ln(1 − x) is the Shannon’s
binary entropy function. Based on this lower bound of the

2This situation can occur when |ϕ0〉 = |ϕ2〉 = |0〉 and |ϕ1〉 = |ϕ3〉 =
|1〉 for both Alice and Bob. In this case, security is obviously
impossible, which is consistent with that both C30C

′
20 and C31C

′
21

can be zero.

secret key rates, in Sec. V we will show a numerical simulation
of real-life QMDIQKD. But before that, we argue in the next
section that the secret key rate obtained here for the pure-state
case is applicable to the mixed-state case as well.

IV. SECURITY PROOF FOR THE MIXED-STATE CASE

We proved the security of our QMDIQKD scheme when
Alice and Bob send pure-qubit states in Sec. III. In this case,
the key rate is given by Eq. (25) with ep bounded by Eq. (24).
Here, we prove in the following that the exact same key-rate
formula and ep bound are applicable to the case where Alice
and Bob send mixed-qubit states. The proof strategy is to reuse
the pure-state results by relying on linearity.

We first purify the mixed states of Alice and Bob in a system
F . Then, the entire state of Alice and Bob can be conditional
on value i of system F , and we denote it as ρABCD,i . Note that
for each i, Alice’s and Bob’s states in ρABCD,i are pure. The
channel by Eve converts the state ρABCD,i to a final state in
systems A and B as in Eq. (11):

ρABCD,i −→ ρAB,i = E(ρABCD,i),

where ρAB,i is the expression in Eq. (11), and E represents
the channel. For simplicity, we denote ρi = ρABCD,i . We may
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calculate ep,i as in Eq. (13) for each i of system F , which we
denote as follows:

ep,i = g′(ρAB,i),

where g′(ρ) is defined as the right-hand side of Eq. (13).
Note that g′ is linear. Furthermore, g′ only depends on the
measurement statistics of ρAB,i , denoted as si,j = Tr(OjρAB,i)
for some measurement Oj (e.g., projection onto a Bell state
|φ+θ 〉). Let 
s(ρAB,i) = [si,1,si,2, . . .] denote the operation that
returns a collection of measurement statistics. Thus, we can
express ep,i as a function of the statistics instead:

ep,i = g(
s(E(ρi))), (26)

where g ◦ 
s = g′.
Denote the key rate taking into account privacy amplifica-

tion only by RPA(ep) = 1 − H (ep).
Remark 1. RPA(ep,i) is a secure-key rate since for each

i, Alice’s and Bob’s states in ρABCD,i are pure and thus the
key-rate formula and the bound for the phase-error rate in
Sec. III apply.

Remark 2.
∑

i piRPA(ep,i) is a secure-key rate because
Alice and Bob could use the value of system F to compute a
key for each i.

Lemma 1. Given that
∑

i piRPA(ep,i) is a secure-key rate,
RPA(

∑
i piep,i) is a secure-key rate. This corresponds to the

case where Alice and Bob do not use the value of system F ,
and so only the average phase-error rate

∑
i piep,i is used.

Proof. This is true because of the convexity of RPA(. . .) in
the domain [0,1/2]. �

Remark 3. We express Eq. (24) in a generic manner:

g(
s) � f (
s) for any collection of measurement statistics 
s,
(27)

where g(
s) represents ep generated by some measurement
statistics 
s [cf. Eqs. (26) and (13)] and f (
s) represents the
right-hand side of Eq. (24). Note that 
s contains p(1|0,0),
p(1|0,1), for example.

Lemma 2. RPA(f (
s(E(ρ)))) is a secure-key rate, where ρ =∑
i piρi is the average state obtained by ignoring system F .
Proof. Note that Lemma 1 shows that

RPA

(∑
i

piep,i

)
(28)

is secure. (This corresponds to giving system F to Eve. But
this point is not relevant to our current discussion.) Three facts
are important: E is linear, g is linear because g′ is linear,
and 
s is linear. This means that the parameter in the above
equation is∑

i

piep,i =
∑

i

pig(
s(E(ρi)))

= g

⎛
⎝
s

⎛
⎝E

(∑
i

piρi

) ⎞
⎠

⎞
⎠

� f

⎛
⎝
s

⎛
⎝E

(∑
i

piρi

) ⎞
⎠

⎞
⎠ ,

where the last line is due to Eq. (27).

Now, note that RPA(x) is a decreasing function of x, i.e.,
RPA(x) � RPA(y) for y � x (in the domain [0,1/2]). Thus,

RPA

(∑
i

piep,i

)
� RPA

⎛
⎝f

⎛
⎝
s

⎛
⎝E

(∑
i

piρi

) ⎞
⎠

⎞
⎠

⎞
⎠.

(29)

Since the left-hand side is secure, the right-hand side must
represent a secure-key rate when Alice and Bob ignore system
F and use only the average state ρ = ∑

i piρi which contains
the encoding state as a mixed state. �

This proves that bounding the phase-error rate by Eq. (24)
with Alice and Bob sending mixed-qubit states produces a
secure-key rate RPA. For the error-correction part of the key-
rate formula REC(eb) � −H (eb), it can be easily seen that it is
applicable to the mixed-state case as well since eb is directly
measured. Alternatively, the same line of arguments in the
above analysis for ep could be used for eb as well, showing
that REC is secure. In essence, we have shown that the key rate
given by Eq. (25) with ep bounded by Eq. (24) is applicable to
the case where Alice and Bob send mixed-qubit states.

V. SIMULATION

We first consider the case that Alice and Bob use ideal BB84
senders (not trusted by Alice and Bob) and an ideal Bell-state
MU to perform QMDIQKD with noise-free channel and no
Eve’s attack, but with photon absorption taken into account.
One must observe that p(1|2,3) = p(1|0,1) = p(2|0,0) =
p(2|1,1) = p(2|2,3) = 0, then with constraint (16) we deduce
that ξ = ζ = 0. Then, through constraints (17) and (19), it is
easy to verify that C30 = C31 = C ′

20 = C ′
21 �= 0. Hence, ε = 0

and then ep = 0. Therefore, in this case, Alice and Bob can
share perfect Bell state |φ−θ 〉AB. Furthermore, MDIQKD can
be secure in this situation, which fits in well with the example
given in Sec. II.

For a general situation, an analytical expression is hard
to obtain. However, according to p(z|x,y) which is directly
known from experiments, χ can be deduced. Then, all C30,
C31, C ′

20, and C ′
21 satisfying constraints (17) and (19) can be

searched, and the maximum of ε can be obtained according to
Eq. (23). Finally, an upper bound of ep can be obtained.

To estimate the performance of QMDIQKD, a numeric
simulation is given. For comparison, we assume that we use
perfect BB84 senders and Bell-state MU (but we do not trust
them) to perform the the QMDIQKD protocol. The MU, whose
implementation can be imagined as the same as the one in
Ref. [34], is equipped with four single-photon detectors (SPDs)
with the detection efficiency η and dark counting rate d per

gate. We assume that Eve is passive and ignore the channel
disturbance and optical misalignment. We also define that l

represents the distance from Alice or Bob to the MU and
ps = 10−0.02lη means the probability that a single photon from
Alice or Bob can click a SPD of MU.

Consequently, if Alice and Bob both emit qubit
|0〉 or |1〉, the MU will announce message 1 with
probability p(1|0,0) = p(1|1,1) = p2

s (1 − d)2/2 + 2ps(1 −
ps)d(1 − d)2 + 2(1 − ps)2d2(1 − d)2, in which the first item
corresponds to the case that the projection of the incoming
photons into |φ+〉CD is successful: the two photons click the
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FIG. 2. (Color online) Secure-key rate R (unit: per sifted key bit
of 0 basis) vs channel distance L (km) from Alice or Bob to MU: we
set η = 0.1, d = 10−5 per pulse. The solid line represents MDIQKD
with perfect trustworthy BB84 senders’ devices, MU without optics
misalignment, which can distinguish one Bell state |φ+〉CD, and no
Eve’s attack; the dashed line is for QMDIQKD with perfect BB84
senders’ devices (but not trusted by Alice and Bob), MU without
optics misalignment, which can distinguish two Bell states |φ+〉CD

and |ψ+〉CD, and no Eve’s attack.

two SPDs and the remaining two SPDs do not give dark clicks.
The second item accounts for the case that only one photon
clicks one SPD but a dark count occurs in one relevant SPD,
and the last item represents the case that two photons are ab-
sorbed by the channel but two dark counts occur in two relevant
SPDs. If Alice and Bob both emit qubit |0〉 or |1〉, the MU will
announce message 2 with probability p(2|0,0) = p(2|1,1) =
2(1 − p)2d2(1 − d)2 + 2p(1 − p)d(1 − d)2, in which the first
item accounts for the case that only one photon clicks one
SPD but a dark count occurs in one relevant SPD, and the last
item represents the case that two photons are absorbed by the
channel but two dark counts occur in two relevant SPDs. And,
p(0|0,0) = p(0|1,1) = 1 − p(1|0,0) − p(2|0,0) also holds.

By the similar considerations, we set p(1|1,0) =
p(1|0,1) = 2(1 − ps)2d2(1 − d)2 + 2ps(1 − ps)d(1 − d)2,
p(2|0,1) = p(2|1,0) = p2

s (1 − d)2/2 + 2ps(1 − ps)d(1 −
d)2 + 2(1 − ps)2d2(1 − d)2, p(0|0,1) = p(0|1,0) =
1 − p(1|0,1) − p(2|0,1), p(1|2,3) = p(1|3,2) = p(2|2,3) =
p(2|3,2) = 2(1 − ps)2d2(1 − d)2 + 2ps(1 − ps)d(1 − d)2,
and p(0|2,3) = p(0|3,2) = 1 − p(1|2,3) − p(2|2,3). The
secure-key rate (unit: per sifted key bit under 0 basis) versus
channel distance L (km) from Alice or Bob to the MU is
given by Fig. 2.

In Fig. 2, the secure-key rate for MDIQKD is given by the
solid line, in which we assume that Alice and Bob are aware
that their encoding states are perfect, MU can only distinguish
Bell state |φ+〉CD, and Eve is passive. The secure-key rate for
QMDIQKD is given by the dashed line, in which we have ideal
BB84 senders (but we do not trust them now), MU can distin-
guish two Bell states |φ+〉CD and |ψ+〉CD, and Eve is passive.

From Fig. 2, we see that QMDIQKD with only the
two-dimensional assumption can offer near 160-km QKD
service between Alice and Bob (i.e., twice the distance

between the MU and Alice or Bob). One should note that
the two lines in Fig. 2 do not converge at L = 0 due to
the errors introduced by dark counts. Here, the detection
efficiency is 10% and thus dark counts occur. It can be seen
that these errors lower the key rate more significantly in
QMDIQKD than in the original MDIQKD. On the other
hand, if the efficiency is 100%, thus eliminating the effect
of dark counts, the two lines will converge at L = 0. To see
this, if L = 0 and the efficiency of SPDs is 1, we must have
p(1|0,1) = p(1|3,2) = p(2|0,0) = p(2|1,1) = p(2|3,2) = 0
and p(1|00) = p(1|11) = 1. Then, ξ = 0 and ζ = 0 according
to their definitions in (16). By (19), we have C30C

′
20 = C31C

′
21

since p(1|0,0) = p(1|1,1) = 1. Also, note that C30C
′
20 �= 0 in

this case. Then, by (23), we obtain ε = 0, ep = 0, and finally
R = 1. And, in this ideal situation, the original MDIQKD will
also have R = 1. Thus, the lines will converge in this case.

VI. CONCLUSION

In this paper, we have proved the security of a new
MDIQKD scheme where uncharacterized qubit source sys-
tems are used. The difference between MDIQKD and
QMDIQKD lies in the knowledge of Alice and Bob on their
encoding states and the requirement of MU announcement.
In MDIQKD, the encoded states are assumed to be well
characterized, and the MU only needs to identify any one
of the Bell states [34]. In QMDIQKD, Alice and Bob do not
need to worry about their encoding systems except that they
need to be sure about the source-state dimensions, and the MU
can distinguish at least two Bell states. The simulation results
show that the scheme is practical. Thus, our work advances
MDIQKD to be more device independent while keeping its
main advantage: high loss and error tolerance.

There are a few extensions to our work that can be done in
the future.

(i) Our security proof assumes that Eve’s attack is collec-
tive. This restriction can be removed by employing the recently
developed security proofs [46,47] to make our protocol secure
against the most general attacks. It is an interesting future
project to extend our proof to the most general attack case in
the finite-size key scenario.

(ii) Currently, the QMDIQKD protocol is restricted to two-
dimensional (qubit) source systems. However, direct extension
of this protocol to higher dimensions is not fruitful. When the
dimension is four or above, the protocol becomes insecure
since the four BB84 states can be unambiguously represented
by a four-dimensional state.

(iii) Weak coherent sources are widely used in QKD
experiments. The decoy-state method can be employed to solve
the multiphoton state issue. To extend the QMDIQKD protocol
to coherent state sources, we can combine this protocol with the
decoy-state method. Since the decoy-state method is proven to
be secure under the Gottesman, Lo, Lutkenhaus, and Preskill
(GLLP) scenario [41,45], such an extension is expected to be
natural.
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