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In the postprocessing of quantum key distribution, the raw key bits from the mismatched-basis measurements,
where two parties use different bases, are normally discarded. Here, we propose a postprocessing method that
exploits measurement statistics from mismatched-basis cases and prove that incorporating these statistics enables
uncharacterized qubit sources to be used in the measurement-device-independent quantum key distribution
protocol and the Bennett-Brassard 1984 protocol, which is otherwise impossible.
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I. INTRODUCTION

Quantum key distribution (QKD) [1,2] exploits quantum
mechanical effects to generate secret keys between two users,
Alice and Bob, against a quantum eavesdropper, Eve. Such
a key may then be used to encrypt further communications
between Alice and Bob using the one-time pad which has been
proven to be information-theoretically secure by Shannon [3].
QKD has also been proven to be secure. Initial security
proofs of QKD focused on the situation in which trusted
or well-characterized devices are used [4–6]. Furthermore,
many QKD experiments have also been successfully demon-
strated [7–16]. However, the applicability of these initial proofs
in real-life situations is questionable, since realistic devices
can be untrusted or uncharacterized because they may be
manufactured by Eve or they simply operate imperfectly.

The security problem caused by using untrusted devices
is a real problem, as demonstrated by various hacking
strategies on practical QKD systems, including the fake-state
attack [17,18], time-shift attack [19,20], phase-remapping
attack [21,22], detector-blinding attack [23,24], and unam-
biguous state discrimination (USD) attack [25]. In these
attacks, device imperfections in QKD systems are exploited.
From the study of hacking, we learn that the major security
issues lie in the detection system. Hence, how to remove
detector side channels becomes a key question in the area.
To solve this problem, QKD protocols that are secure against
detection loopholes have been proposed [26,27], none of
which, however, is practical. Lo et al. presented a seminal work
of measurement-device-independent QKD (MDIQKD) [28],
which can be practically implemented and is immune to
all possible detector side channel attacks. Recently, several
experimental demonstrations of MDIQKD prove its practi-
cality [29–32]. The MDIQKD scheme shares the advantage
with the BB84 protocol [1] that no entanglement is needed.
Another approach that solves all side channel problems at both
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source and receiver is by using an entanglement source in the
device-independent QKD (DIQKD) scheme [33–36].

MDIQKD and BB84 are attractive schemes for practical
implementations because of their long achievable distances
and they operate in the prepare-and-measure manner. DIQKD
suffers from the need for low-loss channels and detectors,
limiting the distance, and the use of entanglement. But at
this cost, DIQKD is superior in that it allows the source and
measurements to be completely uncharacterized. In contrast,
a major common problem of standard MDIQKD and BB84
is that they require the source states to be perfect or well
characterized [37,38]. Otherwise, if the source states can be
arbitrary, it can be easily shown that they cannot generate
any secret key. In this paper, we prove that by incorporating
the mismatched-basis data in the security analysis, MDIQKD
and BB84 can generate secret keys even when the source
states are uncharacterized qubits. This is a modification to
standard MDIQKD and BB84 which discard mismatched-
basis data and ignore their statistics. In essence, our method
endows MDIQKD and BB84 with a higher level of device
independency, approaching that of DIQKD. We note that our
method still requires the source states to be qubits, while this
is not necessary in DIQKD. On the other hand, we remark
that our qubit assumption is not too stringent in many practical
MDIQKD and BB84 systems. For example, in phase-encoding
systems, it is reasonable to assume that the encoding states are
in two-dimensional space while the accuracies of the phase
modulators may be questionable.

We remark that using the mismatched-basis statistics in
security analysis has been proposed before. Barnett et al. [39]
showed that mismatched-basis statistics alone can detect the
presence of intercept-and-resend attacks by Eve when perfect
source states are used. Watanabe et al. [40] used these statistics
to improve the key generation rate of BB84 for some types of
channels but perfect source states are still assumed. Recently,
Tamaki et al. [41] provided a scheme that uses these statistics
to mitigate the adverse effect of source errors but it requires
full characterization of the imperfect source qubit states. Here,
our work is very different; we use the mismatched-basis
statistics to lift some restriction on the source. No detailed
characterization of the qubit source is needed. Essentially, we
show that the case of no security at all (where the source qubit
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states are uncharacterized) can be made secure by using the
mismatched-basis statistics.

Let us look into the issue of mismatched basis in more
detail. In the BB84 protocol, the encoding states of Alice
are the eigenstates of the Pauli operators Z or X, while
Bob performs the Z- or X-basis measurements randomly to
measure the quantum state sent by Alice. In standard BB84,
only the key bits and statistics of matched-basis cases (i.e.,
Alice and Bob choose the same basis) are considered while
the cross-basis data are discarded. This is reasonable since
Alice completely knows her encoding states and Bob is also
sure that his measurement is either Z or X. Thus, the statistics
of mismatched basis are not needed in general. However,
when we consider that Alice’s encoding operations and Bob’s
measurements are not fully characterized, the statistics for
mismatched basis are needed. As an example, we consider
that Alice’s encoding states are all eigenstates of Z and Bob’s
measurements are all Z projections. If Alice and Bob are
unaware of that, the protocol is of course not secure. But Alice
and Bob can exclude this error if they observe the statistics of
the mismatched basis. Hence, the mismatched basis statistics
should help the QKD protocol to be secure even when there
are some imperfections in their devices. We provide a proof
for this in this paper.

In the original MDIQKD protocol, Alice and Bob each
encode their traveling qubits randomly from {|0〉,|1〉,|+〉,|−〉},
and send them to a measurement unit (MU) controlled by
untrusted party Eve, who is supposed to perform a Bell-
state measurement (BSM) on the incoming qubit pairs. Eve
announces a message to Alice and Bob according to her
measurement result. A secure key can then be established
between Alice and Bob given Eve’s announcements. The
advantage of MDIQKD is that its security does not rely on
any assumption of the MU, which can even be assumed to
be fabricated or controlled by Eve; also, Eve is allowed to
not cooperate and lie. Even under these settings, the final key
is still secure. However, the security of MDIQKD relies on
the assumption that Alice and Bob are able to characterize
their encoding systems [37,38]. Recently, by modifying the
original MDIQKD and assuming qubit sources, we have
proved that even when the encoding systems are totally
unknown, MDIQKD can still be secure [42]. In this modified
MDIQKD scheme, which we call qubit-MDIQKD [42], the
MU must be able to distinguish two Bell states, while the
original MDIQKD protocol identifies only one Bell state.

In this paper, we propose a modification to the original
MDIQKD protocol. Unlike qubit-MDIQKD, our scheme
needs to identify only one Bell state, while still allowing
uncharacterized qubit encoding systems, thanks to the incor-
poration of the mismatched-basis statistics. Here, we prove
the security of this scheme and show that it outperforms
the qubit-MDIQKD scheme. Our main proof here is for the
MDIQKD scheme and we can specialize it to work on BB84 as
well. The idea is to regard the MU and Bob in qubit-MDIQKD
as Bob in BB84. Thus, with one proof, we cover the security of
both MDIQKD and BB84 using uncharacterized qubit sources.
In BB84, our proof also allows uncharacterized qubit von
Neumann measurements to be used.

The rest of the article is organized as follows. In Sec. II, we
present the details of the proposed MDIQKD scheme and the

FIG. 1. A schematic diagram for the MDIQKD protocol. BSM
is the Bell-state measurement, which is an untrusted device and may
be controlled by Eve; |ϕ0〉, |ϕ1〉, |ϕ2〉, |ϕ3〉 (|ϕ′

0〉, |ϕ′
1〉, |ϕ′

2〉, |ϕ′
3〉)

represent Alice (Bob)’s four encoding states.

main result of our security proof. The details of our security
proof are given in the appendix. We adapt our analysis to
BB84 in Sec. III. In Sec. IV, we give a numerical simulation
on the proposed scheme, which is also compared to the
original MDIQKD scheme and the qubit-MDIQKD scheme
of Ref. [42]. We also show the performance of BB84 with
mismatched-basis statistics (our scheme) and compare it with
the original BB84. Finally, we conclude in Sec. V.

II. MDIQKD PROTOCOL WITH MISMATCHED-BASIS
STATISTICS AND MAIN RESULT

The protocol setting for MDIQKD with uncharacterized
qubit sources is as follows. Alice and Bob send their encoded
qubits to Eve for BSM, as shown in Fig. 1. When Alice (Bob)
selects to output a state with index x (y), her (his) encoding
device emits a mixed-qubit state ρA,x (ρB,y) to Eve. Alice
and Bob do not know what these states are. For simplicity,
we assume that the states are pure states ρA,x = |ϕx〉〈ϕx |
and ρB,y = |ϕ′

y〉〈ϕ′
y |. This is without loss of generality, and

the mixed-state case automatically holds by using the same
argument as in our qubit-MDIQKD analysis [42]. We assume
that the initial joint state with Eve’s system is ρA,x ⊗ ρB,y ⊗
ρE forallx,y where Eve’s state ρE is independent of x and
y. The MU performs a BSM on the incoming states and
announces whether the projection is successful to Alice and
Bob. The MU is required only to identity one Bell state (same
as the original MDIQKD and unlike qubit-MDIQKD [42]).

We analyze its security using the entanglement distillation
protocol (EDP) method [5,6], which is widely used for security
proofs of QKD. The essence of this method is to regard our
protocol as one that generates entangled pairs at the end. This
means that we construct an equivalent EDP. Then based on
this EDP, we obtain the relation between the phase error rate
and the bit error rate, the latter of which can be estimated in
experiments. Finally, the key generate rate can be calculated
using this relation. We give the equivalent EDP version of our
protocol as follows.

(1) Alice and Bob prepare N pairs of entangled states,

|φ+〉AC = (|0〉A |ϕ0〉C + |1〉A |ϕ1〉C + |2〉A|ϕ2〉C
+ |3〉A|ϕ3〉C)/2,

|φ+〉BD = (|0〉B |ϕ′
0〉D + |1〉B |ϕ′

1〉D + |2〉B |ϕ′
2〉D

+ |3〉B |ϕ′
3〉D)/2, (1)

respectively. The subscripts A and B denote Alice’s and Bob’s
classical raw key bits, respectively, where we assign values 0
and 1 to basis 0 and values 2 and 3 to basis 1. The states |ϕx〉C

052319-2



MISMATCHED-BASIS STATISTICS ENABLE QUANTUM . . . PHYSICAL REVIEW A 90, 052319 (2014)

TABLE I. List of conditional probabilities p(z|x,y) for the case
where Alice and Bob choose one of the four BB84 states with
equal probabilities. Only cases where they choose the same basis
are considered. No loss is considered.

�
��z
x,y

0,0 0,1 1,0 1,1 2,2 2,3 3,2 3,3

0 1/2 1 1 1/2 1/2 1 1 1/2
1 1/2 0 0 1/2 1/2 0 0 1/2

�
��z
x,y

0,2 0,3 1,2 1,3 2,0 3,0 2,1 3,1

0 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4
1 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4

and |ϕ′
x〉D (x = 0,1,2,3) are, respectively, Alice’s and Bob’s

uncharacterized encoding qubits to be sent to the MU. Alice
and Bob only know that |ϕx〉C and |ϕ′

x〉D are two-dimensional
states but do not know the details, since they do not trust the
accuracies of their encoding systems. Essentially, Alice’s and
Bob’s emitted states are determined by a measurement. By
measuring her half of the system, Alice collapses the system
C to one of |ϕi〉C with i = 0,1,2,3 with equal probabilities,
which is equivalent to Alice preparing the system C in one of
the four states with equal probabilities; similarly for Bob.

(2) Alice and Bob send the states, labeled by C and D

respectively, to Eve who announces her BSM result. There
are two possible outcomes: BSM failure or a successful
measurement result in the Bell states

|φ+〉CD = (|0〉C |0〉D + |1〉C |1〉D)/
√

2. (2)

For the first outcome Eve announces message z = 0 to Alice
and Bob, while message z = 1 is announced for the second
outcome. One must note that Eve might not honestly announce
her measurement results, or might not even perform the above
mentioned BSM. However, Eve must announce a message
z = 0 or z = 1 to Alice and Bob for each trial.

(3) After receiving Eve’s message, Alice and Bob perform
bit sifting: They discard their bits when Eve announces a
BSM failure (z = 0). Then, they project systems A and
B in Eq. (1) onto |0〉〈0| + |1〉〈1| or |2〉〈2| + |3〉〈3|, which
correspond to basis 0 and basis 1, respectively. They perform
basis sifting next: When their systems collapse onto the same
bases, by sacrificing some bits for error testing,1 they can
deduce conditional probability distributions p(z|x,y), where
z = 0,1 stands for Eve’s announcements (failure or Eq. (2)

respectively), and x and y (x,y ∈ {0,1,2,3}) represent the
states of systems A and B. When their systems collapse onto
different bases, they deduce similar probability distributions
p(z|x,y), but the raw key bits are discarded.

(4) Finally, Alice and Bob perform EDP on systems A

and B and obtain maximally entangled Bell states |φ+θ 〉AB =
(|0〉A|0〉B + eiθ |1〉A|1〉B)/

√
2, where secret key bits can be

extracted.
The conditional probabilities of the measurement result by

a lossless MU are listed in Table I, from which one can see that
there is a 75% intrinsic loss for the original MDIQKD scheme
when only one Bell state can be distinguished.

Before introducing our security proof, let us see why
statistics of mismatched-basis cases can be used to generate
secure key bits with a simple example. In the original
MDIQKD protocol, Alice and Bob extract a secure key from
the first half (matched-basis case) of the results shown in
Table I and discard the second half (mismatched-basis case).
Such postprocessing would fail when Alice and Bob do not
trust the accuracy of their qubit-encoding systems. Consider
the case when |ϕ0〉 = |ϕ2〉 = |0〉 and |ϕ1〉 = |ϕ3〉 = |1〉 for
both Alice and Bob. It is obvious that Alice and Bob may still
observe probabilities p(z|x,y) with perfect correlations for the
matched-basis case, but all key bits can be eavesdropped by
Eve. On the other hand, the results from the mismatched-basis,
the second half of Table I, can be used to exclude this attack, in
which Alice and Bob would find perfect correlations instead
of random results.

A. Main result

In the above protocol, if Alice and Bob observe the proba-
bilities p(z|x,y), their final secret key bits in basis 0 is given by
R = 1 − H (eb) − H (ep), in which H (x) = −x log2 x − (1 −
x) log2(1 − x) is the Shannon’s binary entropy function. The
bit error rate in basis 0 is given by

eb = p(1|0,1) + p(1|1,0)

p(1|0,0) + p(1|1,1) + p(1|0,1) + p(1|1,0)
, (3)

and phase error rate is bounded by

ep ≤ ε + eb. (4)

The deviation ε is defined as

ε � max
C,C ′

f (C,C ′), (5)

where the maximization takes over all non-negative real
numbers C30, C31, C ′

20, and C ′
21 satisfying definite constraints

to find the maximum value of function f (C,C ′),

f (C,C ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{ (

√
p(1|3,2)+√

p(1|0,1)C30C
′
21+

√
p(1|1,0)C31C

′
20+

√
p(1|1,1)|C30C

′
20−C31C

′
21|)2

2(p(1|0,0)+p(1|1,1)+p(1|0,1)+p(1|1,0))C2
30C

′2
20

,

(
√

p(1|3,2)+√
p(1|0,1)C30C

′
21+

√
p(1|1,0)C31C

′
20+

√
p(1|0,0)|C30C

′
20−C31C

′
21|)2

2(p(1|0,0)+p(1|1,1)+p(1|0,1)+p(1|1,0))C2
31C

′2
21

}
, if C30C

′
20 	= 0 and C31C

′
21 	= 0

(
√

p(1|3,2)+√
p(1|0,1)C30C

′
21+

√
p(1|1,0)C31C

′
20+

√
p(1|1,1)|C30C

′
20−C31C

′
21|)2

2(p(1|0,0)+p(1|1,1)+p(1|0,1)+p(1|1,0))C2
30C

′2
20

, if C30C
′
20 	= 0 and C31C

′
21 = 0

(
√

p(1|3,2)+√
p(1|0,1)C30C

′
21+

√
p(1|1,0)C31C

′
20+

√
p(1|0,0)|C30C

′
20−C31C

′
21|)2

2(p(1|0,0)+p(1|1,1)+p(1|0,1)+p(1|1,0))C2
31C

′2
21

, if C30C
′
20 = 0 and C31C

′
21 	= 0

1 − eb, if C30C
′
20 = 0 and C31C

′
21 = 0,

(6)

1An alternative way to do that is by performing error verification after error correction [43,44].
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where min{a,b} yields the smaller one of real numbers a and b. And constraints for searching the maximum value are

−2
√

p(1|0,0)p(1|1,0)C30C31 ≤ p(1|3,0) − p(1|0,0)C2
30 − p(1|1,0)C2

31 ≤ 2
√

p(1|0,0)p(1|1,0)C30C31,

−2
√

p(1|0,1)p(1|1,1)C30C31 ≤ p(1|3,1) − p(1|0,1)C2
30 − p(1|1,1)C2

31 ≤ 2
√

p(1|0,1)p(1|1,1)C30C31,
(7)

−2
√

p(1|0,0)p(1|0,1)C ′
20C

′
21 ≤ p(1|0,2) − p(1|0,0)C ′2

20 − p(1|0,1)C ′2
21 ≤ 2

√
p(1|0,0)p(1|0,1)C ′

20C
′
21,

−2
√

p(1|1,0)p(1|1,1)C ′
20C

′
21 ≤ p(1|1,2) − p(1|1,0)C ′2

20 − p(1|1,1)C ′2
21 ≤ 2

√
p(1|1,0)p(1|1,1)C ′

20C
′
21.

We can see that the cross-basis statistics restrict the variables C30, C31, C ′
20 and C ′

21. Thus, the phase error rate is obtained by
numerical optimization. The proof of this main result is detailed in appendix. Note that with the procedure introduced in the
Sec. IV of Ref. [42], our main result applies to case that Alice’s and Bob’s encoding states are two-dimensional mixed states,
although the proof given in appendix is based on two-dimensional pure states.

The above results are general results for arbitrary observed probabilities p(z|x,y), but it seems a bit complicated. For ease
of understanding, we simplify our results for typical MDIQKD implementations. Consider that in a successful experiment
for MDIQKD, one may observe that p(1|00) = p(1|11), p(1|01) = p(1|10) and p(1|3,0) = p(1|3,1) = p(1|0,2) = p(1|1,2) =
(p(1|00) + p(1|01))/2. Under this case, we simplify the function f (C,C ′) and the constraints as

f (C,C ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
√

e′
b+

√
eb(C30C

′
21+C31C

′
20)+√

1−eb |C30C
′
20−C31C

′
21|)2

4max{C2
30C

′2
20,C

2
31C

′2
21}

, if C30C
′
20 	= 0 and C31C

′
21 	= 0

(
√

e′
b+

√
eb(C30C

′
21+C31C

′
20)+√

1−eb |C30C
′
20−C31C

′
21|)2

4C2
30C

′2
20

, if C30C
′
20 	= 0 and C31C

′
21 = 0

(
√

e′
b+

√
eb(C30C

′
21+C31C

′
20)+√

1−eb |C30C
′
20−C31C

′
21|)2

4C2
31C

′2
21

, if C30C
′
20 = 0 and C31C

′
21 	= 0

1 − eb, if C30C
′
20 = 0 and C31C

′
21 = 0,

(8)

where e′
b = p(1|3,2)/(p(1|0,0) + p(1|0,1)), and max{a,b} yields the larger one of real numbers a and b. And constraints for

searching maximum value are simplified as

−2
√

eb(1 − eb)C30C31 ≤ 1
2 − (1 − eb)C2

30 − ebC
2
31 ≤ 2

√
eb(1 − eb)C30C31,

−2
√

eb(1 − eb)C30C31 ≤ 1
2 − ebC

2
30 − (1 − eb)C2

31 ≤ 2
√

eb(1 − eb)C30C31,

−2
√

eb(1 − eb)C ′
20C

′
21 ≤ 1

2 − (1 − eb)C ′2
20 − ebC

′2
21 ≤ 2

√
eb(1 − eb)C ′

20C
′
21,

−2
√

eb(1 − eb)C ′
20C

′
21 ≤ 1

2 − ebC
′2
20 − (1 − eb)C ′2

21 ≤ 2
√

eb(1 − eb)C ′
20C

′
21.

(9)

III. BB84 WITH UNCHARACTERIZED SOURCES
AND MEASUREMENTS

Our MDIQKD security analysis can be directly applied to
the BB84 protocol with the following conditions:

(1) Alice prepares one of four uncharacterized qubit states;
(2) Bob receives a qubit state from the channel; and
(3) Bob’s measurement is one of two uncharacterized qubit

von Neumann (projective) measurements corresponding to the
two BB84 bases.

This means that the measurement for each basis is a
projection onto two orthogonal states. Let Bob’s qubit mea-
surement for basis 0 be a projection onto {|ϕ̄′

0〉,|ϕ̄′
1〉} and

for basis 1 be {|ϕ̄′
2〉,|ϕ̄′

3〉}, where 〈ϕ̄′
0|ϕ̄′

1〉 = 〈ϕ̄′
2|ϕ̄′

3〉 = 0 and
|ϕ̄′

0〉〈ϕ̄′
0| + |ϕ̄′

1〉〈ϕ̄′
1| = |ϕ̄′

2〉〈ϕ̄′
2| + |ϕ̄′

3〉〈ϕ̄′
3| = I .

The main idea is to merge the MU and Bob in the MDIQKD
setting to become Bob in the BB84 setting (see Fig. 2). In the
BB84 picture, Alice emits a qubit state, which is processed by
Eve and is received by Bob as ρx . Bob chooses basis 0 or 1 with
equal probabilities to measure it. The probability of obtaining
My = |ϕ̄′

y〉〈ϕ̄′
y |, y = 0,1,2,3 conditional on a chosen basis is

tr(ρxMy).
Alternatively, Bob may do the following to perform

effectively the same measurement. Bob prepares one of the

four states |ϕ′
y〉, y = 0,1,2,3, with equal probabilities and

makes a BSM on ρx ⊗ |ϕ′
y〉〈ϕ′

y |. If the BSM produces the

projection outcome of |φ+〉 = (|00〉 + |11〉)/√2, then this is
equivalent to measuring ρx with My . The key to this argument
is to notice that

(〈ϕx |A〈ϕ′
y |B)(|00〉 + |11〉)AB = 〈ϕx |ϕ̄′

y〉A
for any |ϕx〉 and |ϕ′

y〉 where |ϕ̄′
y〉 is the complex conjugate

of |ϕ′
y〉. This means that the probability of obtaining a |φ+〉

projection by the BSM is

p(1|x,y) = tr(|φ+〉〈φ+|(ρx ⊗ |ϕ′
y〉〈ϕ′

y |))
= 1

2 tr(ρxMy).

The term p(1|x,y) corresponds to a hypothetical MDIQKD
setting where the MU identifies |φ+〉 and the last term
corresponds to the BB84 setting. Thus, we can regard the BB84
setting where we drop half of the measurement outcomes as an
MDIQKD setting where the measurement outcomes are kept
when the MU gets |φ+〉. To make this equivalence rigorous, we
also need the freedom to choose the distribution for selecting
y in the MDIQKD setting to match the occurrences of y in
the BB84 setting. We have this freedom in the MDIQKD
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FIG. 2. The security proof of MDIQKD (left) can be applied to BB84 (right) when the MU is merged into Bob. We impose that the MU
honestly announces the |φ+〉 = (|00〉 + |11〉)/√2 outcome when it performs the BSM. The two von Neumann (projective) measurements of
Bob on the right correspond to the two BB84 bases and each projects onto two orthogonal qubit states. The relationship between the states in
MDIQKD and BB84 is that |ϕ′

y〉 is the complex conjugate of |ϕ̄′
y〉 for y = 0,1,2,3.

setting because the phase error bound in our security proof is
independent of this distribution. Since the MDIQKD situation
is a restricted case of the general one considered in our
proof (because we consider a specific MU that identifies
|φ+〉 honestly and Eve is allowed to intervene with Alice’s
state only), it is covered by our proof, which means that
the equivalent BB84 setting where half of the outcomes are
dropped is also covered by our proof. To get a relationship
between bit and phase error rates for the actual BB84 protocol,
we simply obtain the measurement probabilities tr(ρxMy) in
the experiment and use them as p(1|x,y) in the formulas (4)–
(7), since the factor of half will be canceled out anyway. Note
that in the actual BB84 protocol, there is no need to drop
half of the outcomes because both the dropped half and the
retained half have the same statistics anyway. We could have
kept the dropped half and would have obtained the exact same
phase error bound. Thus, the two halves can be used together
to generate a secret key.

IV. SIMULATION

We first consider the case that Alice and Bob use
ideal BB84 senders (not trusted by Alice and Bob though)
and an ideal Bell-state MU to perform our protocol with
noiseless channel and no Eve’s attack, but with photon
absorption taken into consideration. One must observe
that eb = 0, p(1|3,0) = p(1|3,1) = p(1|0,2) = p(1|1,2) =
p(1|0,0)/2 = p(1|1,1)/2, then with constraints (7), we deduce
that C30 = C31 = C ′

20 = C ′
21 = 1/

√
2. Then, through (6), it is

easy to verify that ε = 0 and thus ep = 0. Hence, MDIQKD
can be secure in this situation.

In general, an analytical expression for the key rate is hard
to obtain when channel errors are presented. One can measure
values of p(z|x,y) from experiments directly and obtain the
key rate (such value needed in postprocessing) via numerical
methods. For comparison, we assume the errors appeared in
the state preparation and measurement are absorbed into the
channel, which can be controlled by Eve. In the simulation,
four single-photon detectors (SPDs) with the dark counting
rate of d are used in the MU. Denote η as the total transmission
efficiency of the channel from Alice (Bob) to the MU in the
middle of channel and thus η is also the probability that a
single photon from Alice or Bob can trigger a SPD of the MU.

Consequently, if Alice and Bob both emit qubit |0〉 or
|1〉, the MU will announce message 1 with probability
p(1|0,0) = p(1|1,1)=η2(1 − d)2/2 + 2η(1 − η)d(1 − d)2 +
2(1 − η)2d2(1 − d)2, in which the first item corresponds to the

case that the projection of the incoming photons into |φ+〉CD

is successful: The two photons trigger the two SPDs and the
remaining two SPDs do not give dark clicks. The second item
accounts for the case that only one photon triggers one SPD
but a dark count occurs in one relevant SPD, and the last
item represents the case that two photons are absorbed by the
channel but two dark counts occur in two relevant SPDs. And
p(0|0,0) = p(0|1,1) = 1 − p(1|0,0) also holds.

Using similar considerations, we set p(1|1,0) =
p(1|0,1) = p(1|3,2) = 2(1 − η)2d2(1 − d)2 + 2η(1 − η)d(1 −
d)2, and p(0|1,0) = p(0|0,1) = 1 − p(1|1,0), p(1|3,0) =
p(1|3,1) and p(1|0,2) = p(1|1,2). Note that the formulas for
the simulation are relevant to the existing literature (cf., Eq.
(7) in Ref. [45]). The secure-key rate (unit: per pulse under
basis 0) versus total transmission loss of channel from Alice
or Bob to the MU is given by Figs. 3 and 4.

FIG. 3. (Color online) Secure-key rate R (unit: per pulse of basis
0) vs total transmission loss (dB) of channel from Alice or Bob to
MU when single-photon sources are equipped: We set d = 10−5 per
pulse. The solid line represents MDIQKD with perfectly trustworthy
BB84 senders’ devices, MU without optics misalignment, which can
distinguish one Bell state |φ+〉CD , and no Eve’s attack; the dashed line
is for the protocol proposed here, with perfect BB84 senders’ devices
(but not trusted by Alice and Bob), MU without optics misalignment,
which can distinguish one Bell states |φ+〉CD , and no Eve’s attack; the
dotted line is for the qubit-MDIQKD protocol proposed in Ref. [42],
with perfect BB84 senders’ devices (but not trusted by Alice and
Bob), MU without optics misalignment, which can distinguish two
Bell states |φ+〉CD and |ψ+〉CD , and no Eve’s attack.
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FIG. 4. (Color online) Secure-key rate R (unit: per pulse of basis
0) vs total transmission loss (dB) of channel from Alice or Bob
to MU when practical coherent sources are equipped: We set d =
10−5 per pulse. The solid line represents MDIQKD with trustworthy
coherent source with mean photon number μ = 0.5, MU without
optics misalignment, which can distinguish one Bell state |φ+〉CD ,
and no Eve’s attack; the dashed line is for the protocol proposed
here, with coherent source with mean photon number μ = 0.5 (its
encoding is not trusted by Alice and Bob but its photon statistics is
trustworthy), MU without optics misalignment, which can distinguish
one Bell states |φ+〉CD , and no Eve’s attack; the dotted line is for the
qubit-MDIQKD protocol proposed in Ref. [42], with coherent source
with mean photon number μ = 0.5 (its encoding is not trusted by
Alice and Bob but its photon statistics is trustworthy), MU without
optics misalignment, which can distinguish two Bell states |φ+〉CD

and |ψ+〉CD , and no Eve’s attack. Infinite decoy states are employed
here.

In Fig. 3, the secure-key rate for original MDIQKD is
given by the solid line, in which we assume that Alice and
Bob know that their encoding states are perfect, the MU can
only distinguish Bell state |φ+〉CD , and Eve is passive. The
secure-key rate for our protocol is given by the dashed line, in
which we have ideal BB84 senders (but we do not trust them
now), MU can distinguish one Bell states |φ+〉CD , and Eve is
passive. In Fig. 4, we consider that practical coherent sources
are used by Alice and Bob, and infinite decoy states [46–48]
are employed.

Additionally, a numerical simulation for BB84 with unchar-
acterized qubit sources and measurements is given in Fig. 5. In
this simulation, we use the same parameters as the simulation
for MDIQKD.

In practice, only a finite number of decoy states are used.
We simulate our proposed BB84 case with three decoy states
(i.e., vacuum state + weak decoy state + signal state) and with
statistical fluctuations in Fig. 6. We assume that the mean
photon numbers of the Poisson-distributed weak decoy state
and signal state are 0.1 and 0.5 respectively. The pulse number
of each encoding states is set to N and 5-times standard
derivation is considered.

The above simulations consider the cases with no en-
coding misalignments. However, encoding misalignments are
inevitable in QKD systems and the power of our method

FIG. 5. (Color online) Secure-key rate R (unit: per pulse of basis
0) vs total transmission loss (dB) of channel from Alice to Bob: We set
d = 10−5 per pulse. The solid line represents original BB84 protocol
with perfect trustworthy BB84 senders’ devices and measurement
device; the dashed line is for the protocol proposed here, in which
perfect BB84 senders’ devices (but not trusted by Alice and Bob) are
equipped while Bob’s measurement devices are also uncharacterized
2-dimensional projections.

is that we do not need to characterize misalignment er-
rors. For simplicity, we give a numerical simulation for
BB84 protocol with the following typical encoding misalign-
ments. We assume that Alice’s encoding system prepares
quantum states |ϕ0〉 = |0〉, |ϕ1〉 = sin a|0〉 + cos a|1〉, |ϕ2〉 =
cos(π/4 + b)|0〉 + sin(π/4 + b)|1〉, and |ϕ3〉 = sin(π/4 +
c)|0〉 − cos(π/4 + c)|1〉 for inputting x = 0,1,2,3. Here, the

FIG. 6. (Color online) Secure-key rate R (unit: per pulse of basis
0) vs total transmission loss (dB) of channel from Alice to Bob:
We set d = 10−5 per pulse. The solid line represents the proposed
BB84 protocol with infinite decoy states; Other lines are all for the
three-decoy-state protocol (i.e., vacuum states + weak decoy states
+signal states) and the mean photon numbers for decoy states and
signal states are 0.1 and 0.5 respectively. The dashed line, dotted
line, dashed-dotted line, and dashed-dotted-dotted line are for N =
∞,1010,108,106 respectively.
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FIG. 7. (Color online) Secure-key rate R (unit: per pulse of basis
0) vs total transmission loss (dB) of channel from Alice to Bob: We
set d = 10−5 per pulse. The solid line represents the proposed BB84
protocol without encoding misalignment; the dashed line is for the
case in which a = b = c = 3◦, the dotted line is for the case in which
a = b = c = 6◦, and the dashed-dotted line is for the case in which
a = b = c = 9◦.

degrees of angles a, b, and c are the encoding misalignments.
Without loss of generality, we assume that Bob’s measure-
ments are ideal BB84 measurements without misalignment.
Consequently, we have that

p(1|0,0) = η(1 − pd ) + (1 − η)pd (1 − pd ),

p(1|1,1) = (1 − pd )η cos2 a + (1 − η)pd (1 − pd ),

p(1|0,1) = (1 − η)pd (1 − pd ),

p(1|1,0) = (1 − pd )η sin2 a + (1 − η)pd (1 − pd ),

p(1|3,2) = (1 − pd )η(sin(π/4 + c) − cos(π/4 + c))2/2

+ (1 − η)pd (1 − pd ),

p(1|3,0) = (1 − pd )η sin2(π/4 + c) + (1 − η)pd (1 − pd ),

p(1|3,1) = (1 − pd )η cos2(π/4 + c) + (1 − η)pd (1 − pd ),

p(1|0,2) = (1 − pd )η/2 + (1 − η)pd (1 − pd ),

and

p(1|1,2) = (1 − pd )η(sin a + cos a)2/2 + (1 − η)pd (1 − pd ).

The key rates with different misalignments and channel losses
are illustrated in Fig. 7, from which we can see that with the
help of mismatched-basis statistics the secure-key rate only
degrades with misalignment errors a,b,c slightly. And, within
a reasonable misalignment range, our protocol is still very
practical.

V. CONCLUSION

In this paper, we propose that the statistics for the bits from
mismatched bases can relax the assumptions on the encoding
devices in original MDIQKD and BB84 protocols. Our method
does not need any modification of the original MDIQKD or
BB84 protocol, except that Alice and Bob should obtain some
statistics of bits from mismatched bases. Alice and Bob do not

need to guarantee the accuracies of their encoding systems
except that they need to be sure that the encoding states
are two-dimensional. Note that our assumptions satisfy many
practical MDIQKD and BB84 systems. For example, in phase-
encoding systems, it is reasonable to assume that encoding
states are in two-dimensional space while the accuracies of
the phase modulators may be questionable. The simulation
results show that with decoy states, our scheme can distribute
secure key bits over long distances (over 100 km). Our main
proof is for the MDIQKD protocol, but we show that it can be
used for the BB84 protocol with uncharacterized sources and
measurements by considering the MU to be part of Bob.
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APPENDIX: PROOF OF MAIN RESULT

We prove our main result here. Following a similar
argument used in Ref. [6], an EDP has been given in Sec. II.
Given that the initial states of Alice’s, Bob’s, and Eve’s ancillas
are separable, the most general collective attack by Eve can be
represented by a unitary transformation as follows:

UEve|ϕx〉C |ϕ′
y〉D|e〉Ea|0〉M

=
√

p(0|x,y)|
xy0〉E|0〉M +
√

p(1|x,y)|
xy1〉E|1〉M,

(A1)

where x,y = {0,1,2,3}, |e〉Ea is Eve’s arbitrary ancilla, |0〉M is
the message which will be sent to Alice and Bob, and |
xy0〉E
and |
xy1〉E are all normalized Eve’s arbitrary quantum states
for Eve’s ancilla and photons C, D. Here, we remark that
our collective attack modeled by Eq. (A1) includes both basis-
independent attack and basis-dependent attack [49]. In a basis-
independent (basis-depedent) attack, the density matrix of the
states emitted by Alice and Bob for basis 0 is the same as
(different from) that for basis 1. The basis dependence can be
measured by fidelity. In general, for basis-dependent attacks,
Eve may obtain basis information by some measurements and
adopt different operations accordingly. Any measurement that
Eve may utilize to learn the basis and the followup operations
can be seen as part of an extended unitary transformation on
Alice’s and Bob’s encoding states and her ancilla given by
Eq. (A1).

We again assume that Alice and Bob do not know the details
of |ϕx〉C and |ϕ′

y〉D (x,y = 0,1,2,3).
Recall that |ϕx〉C and |ϕ′

y〉D are both in the two-dimensional
Hilbert space and they are disjoint (|ϕxy〉CD = |ϕx〉C |ϕ′

y〉D),
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so we may arbitrarily assign a phase to each of them. Thus

|ϕ2〉C = C20|ϕ0〉C + C21e
iθ2 |ϕ1〉C,

|ϕ3〉C = C30|ϕ0〉C + C31e
iθ3 |ϕ1〉C,

|ϕ′
2〉D = C ′

20|ϕ′
0〉D + C ′

21e
iθ ′

2 |ϕ′
1〉D,

|ϕ′
3〉D = C ′

30|ϕ′
0〉D + C ′

31e
iθ ′

3 |ϕ′
1〉D

(A2)

must hold for some non-negative real numbers Cxy and C ′
xy .

To begin our analysis, without loss of generality, we can assume in Eq. (A1) that |
xyz〉E = ∑
n γxyzn|n〉E , in which |n〉E are a

set of normalized orthogonal bases of Eve’s states, and complex number γxyzn =E 〈n|
xyz〉E , satisfying
∑

n |γxyzn|2 = 1. Thus,
the density matrix for the case that Alice and Bob both select basis 0 is

ρ = 1

p(1|0,0) + p(1|1,1) + p(1|0,1) + p(1|1,0)

·
∑

n

P {
√

p(1|0,0)γ001n|0〉A|0〉B +
√

p(1|1,1)γ111n|1〉A|1〉B +
√

p(1|0,1)γ011n|0〉A|1〉B +
√

p(1|1,0)γ101n|1〉A|0〉B}

=
∑

n P {√p(1|0,0)γ001n|0〉A|0〉B + √
p(1|1,1)γ111n|1〉A|1〉B + √

p(1|0,1)γ011n|0〉A|1〉B + √
p(1|1,0)γ101n|1〉A|0〉B}

p(1|0,0) + p(1|1,1) + p(1|0,1) + p(1|1,0)
,

(A3)

in which P {|x〉} = |x〉〈x|. The aim of this EDP is to obtain perfect Bell states |φ+α〉AB = (|0〉A|0〉B + ei(αA+αB )|1〉A|1〉B)/
√

2.
Accordingly, we can define the bit error rate eb and phase error rate ep under basis 0:

eb = A〈0|B〈1|ρ|1〉B |0〉A +A 〈1|B〈0|ρ|0〉B |1〉A = p(1|0,1) + p(1|1,0)

p(1|0,0) + p(1|1,1) + p(1|0,1) + p(1|1,0)
, (A4)

ep = AB〈φ−α|ρ|φ−α〉AB +AB 〈ψ−α|ρ|ψ−α〉AB

=
∑

n |√p(1|0,0)γ001n − e−i(αA+αB )√p(1|1,1)γ111n|2 + ∑
n |√p(1|0,1)γ011n − e−i(αA−αB )√p(1|1,0)γ101n|2

2(p(1|0,0) + p(1|1,1) + p(1|0,1) + p(1|1,0))

≤
∑

n |√p(1|0,0)γ001n − e−i(αA+αB )√p(1|1,1)γ111n|2
2(p(1|0,0) + p(1|1,1) + p(1|0,1) + p(1|1,0))

+ eb (A5)

in which |φ−α〉AB = (|0〉A|0〉B − ei(αA+αB )|1〉A|1〉B)/
√

2 and |ψ−α〉AB = (|0〉A|1〉B − ei(αA−αB )|1〉A|0〉B)/
√

2. The goal is to
upper-bound ep effectively. Before proceeding, we remark that we just focus on the ep and final key bit rate for basis 0
for simplicity, and thus we do not need to calculate the density matrix for basis 1. But this basis 0’s ep must be related to some
probabilities of basis 1, such as p(1|3,2). Now we begin to detail how to obtain an upper bound of ep.

We substitute the relations (A2) into Eq. (A1) to obtain the following constraints:

Cx0C
′
y0

√
p(z|0,0)|
00z〉E + Cx0C

′
y1

√
p(z|0,1)eiθ ′

y |
01z〉E + Cx1C
′
y0

√
p(z|1,0)eiθx |
10z〉E + Cx1C

′
y1

√
p(z|1,1)ei(θx+θ ′

y )|
11z〉E
=

√
p(z|x,y)|
xyz〉E, (A6)

in which x,y = {2,3} and z = {0,1}. Considering that |
xyz〉E can be spanned by a set of basis |n〉E and with Eq. (A6), we obtain∑
n

|C30C
′
20

√
p(1|0,0)γ001n + C31C

′
21

√
p(1|1,1)ei(θ3+θ ′

2)γ111n|2 ≤ (
√

p(1|3,2) +
√

p(1|0,1)C30C
′
21 +

√
p(1|1,0)C31C

′
20)2.

(A7)

By observing the left-hand side of relation (A7) and with the help of triangle inequality and Cauchy-Schwarz inequality, we have∑
n

|C30C
′
20

√
p(1|0,0)γ001n + C31C

′
21

√
p(1|1,1)ei(θ3+θ ′

2)γ111n|2

≥
∑

n

(C30C
′
20|

√
p(1|0,0)γ001n +

√
p(1|1,1)ei(θ3+θ ′

2)γ111n| − |C30C
′
20 − C31C

′
21|

√
p(1|1,1)|γ111n|)2

= C2
30C

′2
20

∑
n

|
√

p(1|0,0)γ001n +
√

p(1|1,1)ei(θ3+θ ′
2)γ111n|2

+(C30C
′
20 − C31C

′
21)2p(1|1,1) − 2C30C

′
20|C30C

′
20 − C31C

′
21|

√
p(1|1,1)

∑
n

|γ001n + ei(θ3+θ ′
2)γ111n||γ111n|
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≥ C2
30C

′2
20

∑
n

|
√

p(1|0,0)γ001n +
√

p(1|1,1)ei(θ3+θ ′
2)γ111n|2

+(C30C
′
20 − C31C

′
21)2p(1|1,1) − 2C30C

′
20|C30C

′
20 − C31C

′
21|

√
p(1|1,1)

√∑
n

|γ001n + ei(θ3+θ ′
2)γ111n|2

=
⎛
⎝C30C

′
20

√∑
n

|
√

p(1|0,0)γ001n +
√

p(1|1,1)ei(θ3+θ ′
2)γ111n|2 − |C30C

′
20 − C31C

′
21|

√
p(1|1,1)

⎞
⎠

2

. (A8)

Therefore, we obtain

∑
n |√p(1|0,0)γ001n + √

p(1|1,1)ei(θ3+θ ′
2)γ111n|2

2(p(1|0,0) + p(1|1,1) + p(1|0,1) + p(1|1,0))

≤
{

(
√

p(1|3,2)+√
p(1|0,1)C30C

′
21+

√
p(1|1,0)C31C

′
20+

√
p(1|1,1)|C30C

′
20−C31C

′
21|)2

2(p(1|0,0)+p(1|1,1)+p(1|0,1)+p(1|1,0))C2
30C

′2
20

, if C30C
′
20 	= 0

1 − eb, if C30C
′
20 = 0.

. (A9)

Furthermore, by the same way, we can obtain that

∑
n |√p(1|0,0)γ001n + √

p(1|1,1)ei(θ3+θ ′
2)γ111n|2

2(p(1|0,0) + p(1|1,1) + p(1|0,1) + p(1|1,0))

≤
{

(
√

p(1|3,2)+√
p(1|0,1)C30C

′
21+

√
p(1|1,0)C31C

′
20+

√
p(1|0,0)|C30C

′
20−C31C

′
21|)2

2(p(1|0,0)+p(1|1,1)+p(1|0,1)+p(1|1,0))C2
31C

′2
21

, if C31C
′
21 	= 0

1 − eb, if C31C
′
21 = 0.

. (A10)

Combining constraints (A9) and (A10), we have

∑
n |√p(1|0,0)γ001n + √

p(1|1,1)ei(θ3+θ ′
2)γ111n|2

2(p(1|0,0) + p(1|1,1) + p(1|0,1) + p(1|1,0))
≤ maxC,C ′f (C,C ′) � ε, (A11)

in which maxC,C ′f (C,C ′) means searching over all C30, C31, C ′
20, and C ′

21 satisfying possible constraints to find the maximum
value of function f (C,C ′). Concretely, the f (C,C ′) is given by

f (C,C ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{ (

√
p(1|3,2)+√

p(1|0,1)C30C
′
21+

√
p(1|1,0)C31C

′
20+

√
p(1|1,1)|C30C

′
20−C31C

′
21|)2

2(p(1|0,0)+p(1|1,1)+p(1|0,1)+p(1|1,0))C2
30C

′2
20

,

(
√

p(1|3,2)+√
p(1|0,1)C30C

′
21+

√
p(1|1,0)C31C

′
20+

√
p(1|0,0)|C30C

′
20−C31C

′
21|)2

2(p(1|0,0)+p(1|1,1)+p(1|0,1)+p(1|1,0))C2
31C

′2
21

}
, if C30C

′
20 	= 0 and C31C

′
21 	= 0

(
√

p(1|3,2)+√
p(1|0,1)C30C

′
21+

√
p(1|1,0)C31C

′
20+

√
p(1|1,1)|C30C

′
20−C31C

′
21|)2

2(p(1|0,0)+p(1|1,1)+p(1|0,1)+p(1|1,0))C2
30C

′2
20

, if C30C
′
20 	= 0 and C31C

′
21 = 0

(
√

p(1|3,2)+√
p(1|0,1)C30C

′
21+

√
p(1|1,0)C31C

′
20+

√
p(1|0,0)|C30C

′
20−C31C

′
21|)2

2(p(1|0,0)+p(1|1,1)+p(1|0,1)+p(1|1,0))C2
31C

′2
21

, if C30C
′
20 = 0 and C31C

′
21 	= 0

1 − eb, if C30C
′
20 = 0 and C31C

′
21 = 0,

(A12)

where min{a,b} yields the smaller one of real numbers a and b.
Next we try to calculate the above bounds by considering some constraints on it, since we have known p(1|3,0), p(1|3,1)

and other probabilities for mismatched basis. In other words, we have learned |M〈1|UEve|ϕ3〉C |ϕ′
0〉D|2, |M〈1|UEve|ϕ3〉C |ϕ′

1〉D|2,
|M〈1|UEve|ϕ0〉C |ϕ′

2〉D|2, |M〈1|UEve|ϕ1〉C |ϕ′
2〉D|2. If we substitute the relations (A2) and Eq. (A1) into these equations, we have

C2
30p(1|0,0) + C2

31p(1|1,0) + 2C30C31

√
p(1|0,0)p(1|1,0)Re{eiθ3〈
001|
101〉} = p(1|3,0),

C2
30p(1|0,1) + C2

31p(1|1,1) + 2C30C31

√
p(1|0,1)p(1|1,1)Re{eiθ3〈
011|
111〉} = p(1|3,1),

C ′2
20p(1|0,0) + C ′2

21p(1|0,1) + 2C ′
20C

′
21

√
p(1|0,0)p(1|0,1)Re{eiθ ′

2〈
001|
011〉} = p(1|0,2),

C ′2
20p(1|1,0) + C ′2

21p(1|1,1) + 2C ′
20C

′
21

√
p(1|1,0)p(1|1,1)Re{eiθ ′

2〈
101|
111〉} = p(1|1,2),

(A13)
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where Re{x} returns the real part of a complex number x. For the ease of numerical computation, we rewrite above constraints as

−2
√

p(1|0,0)p(1|1,0)C30C31 ≤ p(1|3,0) − p(1|0,0)C2
30 − p(1|1,0)C2

31 ≤ 2
√

p(1|0,0)p(1|1,0)C30C31,

−2
√

p(1|0,1)p(1|1,1)C30C31 ≤ p(1|3,1) − p(1|0,1)C2
30 − p(1|1,1)C2

31 ≤ 2
√

p(1|0,1)p(1|1,1)C30C31,

−2
√

p(1|0,0)p(1|0,1)C ′
20C

′
21 ≤ p(1|0,2) − p(1|0,0)C ′2

20 − p(1|0,1)C ′2
21 ≤ 2

√
p(1|0,0)p(1|0,1)C ′

20C
′
21,

−2
√

p(1|1,0)p(1|1,1)C ′
20C

′
21 ≤ p(1|1,2) − p(1|1,0)C ′2

20 − p(1|1,1)C ′2
21 ≤ 2

√
p(1|1,0)p(1|1,1)C ′

20C
′
21.

(A14)

Now the task is to calculate ε in Eq. (A11) with constraints Eqs. (A14). Then ep can be calculated easily. Therefore, the
secure-key rate is given by

R = 1 − H (eb) − H (ep) = 1 − H (eb) − H (min{ε + eb,1/2}), (A15)

where H (x) = −x log2 x − (1 − x) log2(1 − x) is the Shannon’s binary entropy function. Note that by employing the recently
developed security proofs [50,51], our protocol can be secure against the most general attacks, although the attack analyzed here
is collective attack.
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