8,843 research outputs found

    X-ray ptychography on low-dimensional hard-condensed matter materials

    Get PDF
    Tailoring structural, chemical, and electronic (dis-)order in heterogeneous media is one of the transformative opportunities to enable new functionalities and sciences in energy and quantum materials. This endeavor requires elemental, chemical, and magnetic sensitivities at the nano/atomic scale in two- and three-dimensional space. Soft X-ray radiation and hard X-ray radiation provided by synchrotron facilities have emerged as standard characterization probes owing to their inherent element-specificity and high intensity. One of the most promising methods in view of sensitivity and spatial resolution is coherent diffraction imaging, namely, X-ray ptychography, which is envisioned to take on the dominance of electron imaging techniques offering with atomic resolution in the age of diffraction limited light sources. In this review, we discuss the current research examples of far-field diffraction-based X-ray ptychography on two-dimensional and three-dimensional semiconductors, ferroelectrics, and ferromagnets and their blooming future as a mainstream tool for materials sciences

    Results and Lessons from a Decade of Terra MODIS On-Orbit Spectral Characterization

    Get PDF
    Since its launch in December 1999, the NASA EOS Terra MODIS has successfully operated for more than a decade. MODIS makes observations in 36 spectral bands from visible (VIS) to longwave infrared (LWIR) and at three nadir spatial resolutions: 250m (2 bands), 500m (5 bands), and 1km (29 bands). In addition to its on-board calibrators designed for the radiometric calibration, MODIS was built with a unique device, called the spectro-radiometric calibration assembly (SRCA). It can be configured in three different modes: radiometric, spatial, and spectral. When it is operated in the spectral modes, the SRCA can monitor changes in Sensor spectral performance for the VIS and near-infrared (NIR) spectral bands. For more than 10 years, the SRCA operation has continued to provide valuable information for MODIS on-orbit spectral performance. This paper briefly describes SRCA on-orbit operation and calibration activities; it presents decade-long spectral characterization results for Terra MODIS VIS and NIR spectral bands in terms of chances in their center wavelengths (CW) and bandwidths (BW). It is shown that the SRCA on-orbit wavelength calibration capability remains satisfactory. For most spectral bands, the changes in CW and BW are less than 0.5 and 1 nm, respectively. Results and lessons from Terra MODIS on-orbit spectral characterization have and will continue to benefit its successor, Aqua MODIS, and other future missions

    Crashworthiness design of a steel–aluminum hybrid rail using multi-response objective-oriented sequential optimization

    Full text link
    © 2017 Elsevier Ltd Hybrid structures with different materials have aroused increasing interest for their lightweight potential and excellent performances. This study explored the optimization design of steel–aluminum hybrid structures for the highly nonlinear impact scenario. A metamodel based multi-response objective-oriented sequential optimization was adopted, where Kriging models were updated with sequential training points. It was indicated that the sequential sampling strategy was able to obtain a much higher local accuracy in the neighborhood of the optimum and thus to yield a better optimum, although it did lead to a worse global accuracy over the entire design space. Furthermore, it was observed that the steel–aluminum hybrid structure was capable of decreasing the peak force and simultaneously enhancing the energy absorption, compared to the conventional mono-material structure

    Multiple Bosonic Mode Coupling in Electron Self-Energy of (La_2-xSr_x)CuO_4

    Full text link
    High resolution angle-resolved photoemission spectroscopy data along the (0,0)-(π\pi,π\pi) nodal direction with significantly improved statistics reveal fine structure in the electron self-energy of the underdoped (La2−x_{2-x}Srx_x)CuO4_4 samples in the normal state. Fine structure at energies of (40∼\sim46) meV and (58∼\sim63)meV, and possible fine structure at energies of (23∼\sim29)meV and (75∼\sim85)meV, have been identified. These observations indicate that, in LSCO, more than one bosonic modes are involved in the coupling with electrons.Comment: 4 pages, 3 figures, Fig. 2 update

    The hierarchy of multiple many-body interaction scales in high-temperature superconductors

    Full text link
    To date, angle-resolved photoemission spectroscopy has been successful in identifying energy scales of the many-body interactions in correlated materials, focused on binding energies of up to a few hundred meV below the Fermi energy. Here, at higher energy scale, we present improved experimental data from four families of high-Tc superconductors over a wide doping range that reveal a hierarchy of many-body interaction scales focused on: the low energy anomaly ("kink") of 0.03-0.09eV, a high energy anomaly of 0.3-0.5eV, and an anomalous enhancement of the width of the LDA-based CuO2 band extending to energies of ~ 2 eV. Besides their universal behavior over the families, we find that all of these three dispersion anomalies also show clear doping dependence over the doping range presented.Comment: 7 pages, 6 figure

    Early Results from NOAA-20 (JPSS-1) Viirs On-Orbit Calibration and Characterization

    Get PDF
    Since launch in November 2018, the VIIRS on-board the NOAA-20 (or JPSS-1) satellite has completed its initial intensive on-orbit check-outs and several key calibration and validation activities scheduled to help evaluate sensor at launch performance. This paper provides a brief overview of NOAA-20 VIIRS on-orbit operation and calibration activities, presents early results derived from its on-board calibrators and lunar observations, and discusses potential improvements and future effort to assure sensor data product quality

    Status of Aqua MODIS On-orbit Calibration and Characterization

    Get PDF
    The MODIS Flight Model 1 (FM1) has been in operation for more than two years since its launch onboard the NASA's Earth Observing System (EOS) Aqua spacecraft on May 4, 2002. The MODIS has 36 spectral bands: 20 reflective solar bands (RSB) with center wavelengths from 0.41 to 2.2 micron and 16 thermal emissive bands (TEB) from 3.7 to 14.5 micron. It provides the science community observations (data products) of the Earth's land, oceans, and atmosphere for a board range of applications. Its primary on-orbit calibration and characterization activities are performed using a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) system for the RSB and a blackbody for the TEB. Another on-board calibrator (OBC) known as the spectro-radiometric calibration assembly (SRCA) is used for the instrument's spatial (TEB and RSB) and spectral (RSB only) characterization. We present in this paper the status of Aqua MODIS calibration and characterization during its first two years of on-orbit operation. Discussions will be focused on the calibration activities executed on-orbit in order to maintain and enhance the instrument's performance and the quality of its Level 1B (L1B) data products. We also provide comparisons between Aqua MODIS and Terra MODIS (launched in December, 1999), including their similarity and difference in response trending and optics degradation. Existing data and results show that Aqua MODIS bands 8 (0.412 micron) and 9 (0.443 micron) have much smaller degradation than Terra MODIS bands 8 and 9. The most noticeable feature shown in the RSB trending is that the mirror side differences in Aqua MODIS are extremely small and stable (<0.1%) while the Terra MODIS RSB trending has shown significant mirror side difference and wavelength dependent degradation. The overall stability of the Aqua MODIS TEB is also better than that of the Terra MODIS during their first two years of on-orbit operation
    • …
    corecore