9,295 research outputs found

    Consensus analysis of multiagent networks via aggregated and pinning approaches

    Get PDF
    This is the post-print version of of the Article - Copyright @ 2011 IEEEIn this paper, the consensus problem of multiagent nonlinear directed networks (MNDNs) is discussed in the case that a MNDN does not have a spanning tree to reach the consensus of all nodes. By using the Lie algebra theory, a linear node-and-node pinning method is proposed to achieve a consensus of a MNDN for all nonlinear functions satisfying a given set of conditions. Based on some optimal algorithms, large-size networks are aggregated to small-size ones. Then, by applying the principle minor theory to the small-size networks, a sufficient condition is given to reduce the number of controlled nodes. Finally, simulation results are given to illustrate the effectiveness of the developed criteria.This work was jointly supported by CityU under a research grant (7002355) and GRF funding (CityU 101109)

    Intrinsic electron glassiness in strongly localized Be films

    Get PDF
    We present results of out-of-equilibrium transport measurements made on strongly localized Beryllium films and demonstrate that these films exhibit all the earmarks of intrinsic electron glasses. These include slow (logarithmic) relaxation, memory effects, and more importantly, the observation of a memory dip that has a characteristic width compatible with the carrier concentration of beryllium. The latter is an empirical signature of the electron glass. Comparing various nonequilibrium attributes of the beryllium films with other systems that exhibit intrinsic electron-glasses behavior reveals that high carrier concentration is their only common feature rather than the specifics of the disorder that rendered them insulating. It is suggested that this should be taken as an important hint for any theory that attempts to account for the surprisingly slow relaxation times observed in these systems. © 2010 The American Physical Society

    A Hessenberg Markov chain for fast fibre delay line length optimization

    Get PDF
    In this paper we present an approach to compute the invariant vector of the N + 1 state Markov chain P presented in (Rogiest et al., Lecture Notes in Computer Science, NET-COOP 2007 Special Issue, pp. 4465:185-194) to determine the loss rate of an FDL buffer consisting of N lines, by solving a related Hessenberg system (i.e., a Markov chain skip-free in one direction). This system is obtained by inserting additional time instants in the sample paths of P and allows us to compute the loss rate for various FDL lengths by solving a single system. This is shown to be especially effective in reducing the computation time of the heuristic LRA algorithm presented in (Lambert et al., Proc. NAEC 2005, pp. 545-555) to optimize the FDL lengths, where improvements of several orders of magnitude can be realized

    The Dichotomy between Nodal and Antinodal Quasiparticles in Underdoped (La2−x_{2-x}Srx_x)CuO4_4 Superconductors

    Full text link
    High resolution angle-resolved photoemission measurements on underdoped (La2−x_{2-x}Srx_x)CuO4_4 system show that, at energies below 70 meV, the quasiparticle peak is well defined around the (π\pi/2,π\pi/2) nodal region and disappears rather abruptly when the momentum is changed from the nodal point to the (π\pi,0) antinodal point along the underlying ``Fermi surface''. It indicates that there is an extra low energy scattering mechanism acting upon the antinodal quasiparticles. We propose that this mechanism is the scattering of quasiparticles across the nearly parallel segments of the Fermi surface near the antinodes.Comment: to appear in Phys. Rev. Let

    Low thermal conductivity in A-site high entropy perovskite relaxor ferroelectric

    Get PDF
    An A-site disordered high entropy perovskite (Pb1/6Ba1/6Sr1/6Ca1/6Na1/6Bi1/6)TiO3 (PBSCNBi) ceramic was prepared by a solid-state reaction method. XRD and scanning electron microscopy-energy dispersive x ray confirmed a single-phase tetragonal solid solution. Dielectric and hysteresis loop measurements showed relaxor ferroelectricity at room temperature; Curie Weiss fitting gives a Burns temperature (Tb) of 123 °C, and Vogel-Fulcher fitting gives a freezing temperature (Tf) of -67.24 °C, which confirms the room-temperature relaxor ferroelectricity of PBSCNBi. This is attributed to local chemical inhomogeneities in the high entropy ceramics. PBSCNBi also has a low thermal conductivity (1.15 W m-1 K-1 at room temperature) compared to all of its constituent simple perovskites (e.g., BaTiO3, PbTiO3, SrTiO3 CaTiO3, and Na1/2Bi1/2TiO3 in the range of 25-100 °C), which is attributed to the enhanced phonon scattering by both polar nanoregions and the mass contrast effect in the multi-element perovskite. This work demonstrates the great potential of making A-site high entropy ceramics with relaxor ferroelectric properties

    Colossal Elastocaloric Effect in Ferroelastic Ni-Mn-Ti Alloys

    Full text link
    Energy-efficient and environment-friendly elastocaloric refrigeration, which is a promising replacement of the conventional vapor-compression refrigeration, requires extraordinary elastocaloric properties. Hitherto the largest elastocaloric effect is obtained in small-size films and wires of the prototype NiTi system. Here, we report a colossal elastocaloric effect, well exceeding that of NiTi alloys, in a class of bulk polycrystalline NiMn-based materials designed with the criterion of simultaneously having large volume change across phase transition and good mechanical properties. The reversible adiabatic temperature change reaches a strikingly high value of 31.5 K and the isothermal entropy change is as large as 45  J kg−1 K−1. The achievement of such a colossal elastocaloric effect in bulk polycrystalline materials should push a significant step forward towards large-scale elastocaloric refrigeration applications. Moreover, our design strategy may inspire the discovery of giant caloric effects in a broad range of ferroelastic materials

    Astragaloside IV liposomes ameliorates adriamycin-induced nephritic syndrome in rats

    Get PDF
    Background: Radix Astragali was one of the main compositions of ‘Modified Danggui Buxue Decoction’  used for treatment of various kidney diseases. Astragaloside IV was the active composition of Radix Astragali. Astragaloside IV liposomes were used for the treatment of adriamycin-induced nephropathy (AN) rats. The aim of the study was to study the effect of astragaloside IV liposomes on AN rats, and to test through  regulating the expression of nephrin, integrins and integrin-linked kinase (ILK) in renal  tissues.Methods: The rats were given a single tail intravenous injection of adriamycin (6 mg/kg) within 1 week,  and then divided into four groups including normal, model, benazepril and astragaloside IV liposomes group. They were all orally administered dosage of benazepril and astragaloside IV liposomes once daily for 8 weeks.Results: Astragaloside IV liposomes significantly reduced the proteinuria of AN rats at 28, 42 and 56 days. astragaloside IV liposomes could increase the mRNA and protein expression of nephrin, integrin α3, down-regulate the expression of ILK to alleviate the podocyte damage and restore glomerular selective filtration function.Conclusions: Astragaloside IV liposomes could enhance renal function and protect podocyte to  ameliorate the adriamycin-induced nephritic syndrome.Key words:Astragaloside IV, Liposomes, Ardiamycin-induce nephropathy, Podocyt
    • …
    corecore