67 research outputs found

    Phosphorous application improves drought tolerance of Phoebe zhennan

    Get PDF
    Phoebe zhennan (Gold Phoebe) is a threatened tree species in China and a valuable and important source of wood and bioactive compounds used in medicine. Apart from anthropogenic disturbances, several biotic constraints currently restrict its growth and development. However, little attention has been given to building adaptive strategies for its conservation by examining its morphological and physio-biochemical responses to drought stress, and the role of fertilizers on these responses. A randomized experimental design was used to investigate the effects of two levels of irrigation (well-watered and drought-stressed) and phosphorous (P) fertilization treatment (with and without P) to assess the morphological and physio-biochemical responses of P. zhennan seedlings to drought stress. In addition, we evaluated whether P application could mitigate the negative impacts of drought on plant growth and metabolism. Drought stress had a significant negative effect on the growth and metabolic processes of P. zhennan. Despite this, reduced leaf area, limited stomatal conductance, reduced transpiration rate, increased water use efficiency, enhanced antioxidant enzymes activities, and osmolytes accumulation suggested that the species has good adaptive strategies for tolerating drought stress. Application of P had a significant positive effect on root biomass, signifying its improved water extracting capacity from the soil. Moreover, P fertilization significantly increased leaf relative water content, net photosynthetic rate, and maximal quantum efficiency of PSII under drought stress conditions. This may be attributable to several factors, such as enhanced root biomass, decreased malondialdehyde content, and the up-regulation of chloroplast pigments, osmolytes, and nitrogenous compounds. However, P application had only a slight or negligible effect on the growth and metabolism of well-watered plants. In conclusion, P. zhennan has a strong capability for drought resistance, while P application facilitates and improves drought tolerance mostly through physio-biochemical adjustments, regardless of water availability. It is imperative to explore the underlying metabolic mechanisms and effects of different levels of P fertilization on P. zhennan under drought conditions in order to design appropriate conservation and management strategies for this species, which is at risk of extinction.Instituto de Fisiología Vegeta

    Phosphorous application improves drought tolerance of phoebe zhennan

    Get PDF
    Phoebe zhennan (Gold Phoebe) is a threatened tree species in China and a valuable and important source of wood and bioactive compounds used in medicine. Apart from anthropogenic disturbances, several biotic constraints currently restrict its growth and development. However, little attention has been given to building adaptive strategies for its conservation by examining its morphological and physio-biochemical responses to drought stress, and the role of fertilizers on these responses. A randomized experimental design was used to investigate the effects of two levels of irrigation (well-watered and drought-stressed) and phosphorous (P) fertilization treatment (with and without P) to assess the morphological and physio-biochemical responses of P. zhennan seedlings to drought stress. In addition, we evaluated whether P application could mitigate the negative impacts of drought on plant growth and metabolism. Drought stress had a significant negative effect on the growth and metabolic processes of P. zhennan. Despite this, reduced leaf area, limited stomatal conductance, reduced transpiration rate, increased water use efficiency, enhanced antioxidant enzymes activities, and osmolytes accumulation suggested that the species has good adaptive strategies for tolerating drought stress. Application of P had a significant positive effect on root biomass, signifying its improved water extracting capacity from the soil. Moreover, P fertilization significantly increased leaf relative water content, net photosynthetic rate, and maximal quantum efficiency of PSII under drought stress conditions. This may be attributable to several factors, such as enhanced root biomass, decreased malondialdehyde content, and the up-regulation of chloroplast pigments, osmolytes, and nitrogenous compounds. However, P application had only a slight or negligible effect on the growth and metabolism of well-watered plants. In conclusion, P. zhennan has a strong capability for drought resistance, while P application facilitates and improves drought tolerance mostly through physio-biochemical adjustments, regardless of water availability. It is imperative to explore the underlying metabolic mechanisms and effects of different levels of P fertilization on P. zhennan under drought conditions in order to design appropriate conservation and management strategies for this species, which is at risk of extinction.Fil: Tariq, Akash. Chinese Academy of Sciences; República de ChinaFil: Pan, Kaiwen. Chinese Academy of Sciences; República de ChinaFil: Olatunji, Olusanya A.. Chinese Academy of Sciences; República de ChinaFil: Graciano, Corina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Li, Zilong. Chinese Academy of Sciences; República de ChinaFil: Sun, Feng. Chinese Academy of Sciences; República de ChinaFil: Sun, Xiaoming. Chinese Academy of Sciences; República de ChinaFil: Song, Dagang. Chinese Academy of Sciences; República de ChinaFil: Chen, Wenkai. Chinese Academy of Sciences; República de ChinaFil: Zhang, Aiping. Chinese Academy of Sciences; República de ChinaFil: Wu, Xiaogang. Chinese Academy of Sciences; República de ChinaFil: Zhang, Lin. Chinese Academy of Sciences; República de ChinaFil: Mingrui, Deng. Chinese Academy of Sciences; República de ChinaFil: Xiong, Qinli. Chinese Academy of Sciences; República de ChinaFil: Liu, Chenggang. Chinese Academy of Sciences; República de Chin

    Phosphorous application improves drought tolerance of Phoebe zhennan

    Get PDF
    Phoebe zhennan (Gold Phoebe) is a threatened tree species in China and a valuable and important source of wood and bioactive compounds used in medicine. Apart from anthropogenic disturbances, several biotic constraints currently restrict its growth and development. However, little attention has been given to building adaptive strategies for its conservation by examining its morphological and physio-biochemical responses to drought stress, and the role of fertilizers on these responses. A randomized experimental design was used to investigate the effects of two levels of irrigation (well-watered and drought-stressed) and phosphorous (P) fertilization treatment (with and without P) to assess the morphological and physio-biochemical responses of P. zhennan seedlings to drought stress. In addition, we evaluated whether P application could mitigate the negative impacts of drought on plant growth and metabolism. Drought stress had a significant negative effect on the growth and metabolic processes of P. zhennan. Despite this, reduced leaf area, limited stomatal conductance, reduced transpiration rate, increased water use efficiency, enhanced antioxidant enzymes activities, and osmolytes accumulation suggested that the species has good adaptive strategies for tolerating drought stress. Application of P had a significant positive effect on root biomass, signifying its improved water extracting capacity from the soil. Moreover, P fertilization significantly increased leaf relative water content, net photosynthetic rate, and maximal quantum efficiency of PSII under drought stress conditions. This may be attributable to several factors, such as enhanced root biomass, decreased malondialdehyde content, and the up-regulation of chloroplast pigments, osmolytes, and nitrogenous compounds. However, P application had only a slight or negligible effect on the growth and metabolism of well-watered plants. In conclusion, P. zhennan has a strong capability for drought resistance, while P application facilitates and improves drought tolerance mostly through physio-biochemical adjustments, regardless of water availability. It is imperative to explore the underlying metabolic mechanisms and effects of different levels of P fertilization on P. zhennan under drought conditions in order to design appropriate conservation and management strategies for this species, which is at risk of extinction.Instituto de Fisiología Vegeta

    Cross-sectional Design: Impact of Parental Conflict on Academic Performance

    No full text

    A General One-Pot Approach to Synthesize Binary and Ternary Metal Sulfide Nanocrystals

    No full text
    Abstract A general one-pot approach is developed to synthesize a series of binary metal sulfide nanocrystals (NCs) including PbS, Cu2S, ZnS, CdS, Ag2S, and ternary CuInS2 and CdS:Cu(I) NCs. This synthetic approach involves thermal decomposition of the mixture of inorganic metal salts and n-dodecanethiol (DDT) without pre-synthesis of any organometallic precursors. In this method, layered metal-thiolate compound is formed at the beginning of the reaction and then this intermediate compound is decomposed into small particles, leading to further growth as the reaction time increases. The as-obtained CdS NCs exhibits a broad but weak surface-state emission, and the Cu(I) doping leads to a red-shift of the emission band due to the Cu(I)-related emission. It is expected that this one-pot approach can be extended to prepare multinary metal sulfide NCs

    Five-Year-Old Preschoolers' Sharing is Influenced by Anticipated Reciprocation

    No full text
    Whether children share in anticipation of future benefits returned by a partner is an interesting question. In this study, 5-year-old children and an adult partner played a sharing game, in which children donated first and the partner donated afterward. In Experiment 1, the partner&#39;s resources were more attractive than the child&#39;s. In the reciprocal condition, the child was told that s/he would be a recipient when the partner played as a donor. In the non-reciprocal condition, however, the child was told that an anonymous child would be the recipient when the partner donated. Results showed that children shared more with the partner when they knew that they would be a recipient later. In Experiment 2, the child was always the recipient when the partner donated, but the partner&#39;s resources were more desirable than the child&#39;s in the high-value condition, and less desirable in the low-value condition. We found that children were more generous when the partner&#39;s resources were valued higher. These findings demonstrate that 5-year-old preschoolers&#39; sharing choices take into account the anticipated reciprocity of the recipient, suggesting either self-interested tactical sharing or direct reciprocity in advance of receiving. Specifically, they adjust their sharing behavior depending on whether a partner has the potential to reciprocate, and whether it is worth sharing relative to the value of the payback.</p

    Experimental and Numerical Investigation on Fatigue Properties of Carbon Fiber Cross-Ply Laminates in Hygrothermal Environments

    No full text
    The fatigue properties of composite materials are degraded seriously in hygrothermal environments, so taking into account their influence is very important when evaluating the fatigue life of composite structures. Tensile fatigue experiments of carbon fiber reinforced resin composite cross-ply laminates were conducted in room temperature/dry (RTD), cool temperature/dry (CTD) and elevated temperature/wet (ETW) conditions. The S-N curves and fatigue failure modes of the cross-ply laminates were obtained in three conditions. On this basis, a finite element model was established to discuss the influence of temperature and moisture content on the fatigue properties, as well as a method for determining environmental factors of fatigue life of cross-ply laminates was established. The results show that the saturation moisture absorption and temperature have a significant influence on the tensile fatigue properties of cross-ply laminates. The high-cycle fatigue property is weakened significantly by the saturation moisture absorption and high temperature, but the low-cycle fatigue properties were strengthened in cool temperature conditions. The delamination failure mode in ETW is the most severe, presenting with an obvious necking phenomenon. The influence of temperature has a greater effect than that of moisture content, but moisture absorption would play its affect obviously when temperature exceeds 40 &deg;C
    corecore