27 research outputs found

    Relaxin in fibrotic ligament diseases: Its regulatory role and mechanism

    Get PDF
    Fibrotic ligament diseases (FLDs) are diseases caused by the pathological accumulation of periarticular fibrotic tissue, leading to functional disability around joint and poor life quality. Relaxin (RLX) has been reported to be involved in the development of fibrotic lung and liver diseases. Previous studies have shown that RLX can block pro-fibrotic process by reducing the excess extracellular matrix (ECM) formation and accelerating collagen degradation in vitro and in vivo. Recent studies have shown that RLX can attenuate connective tissue fibrosis by suppressing TGF-β/Smads signaling pathways to inhibit the activation of myofibroblasts. However, the specific roles and mechanisms of RLX in FLDs remain unclear. Therefore, in this review, we confirmed the protective effect of RLX in FLDs and summarized its mechanism including cells, key cytokines and signaling pathways involved. In this article, we outline the potential therapeutic role of RLX and look forward to the application of RLX in the clinical translation of FLDs

    Photoluminescence Study of the Interface Fluctuation Effect for InGaAs/InAlAs/InP Single Quantum Well with Different Thickness

    Get PDF
    Photoluminescence (PL) is investigated as a function of the excitation intensity and temperature for lattice-matched InGaAs/InAlAs quantum well (QW) structures with well thicknesses of 7 and 15 nm, respectively. At low temperature, interface fluctuations result in the 7-nm QW PL exhibiting a blueshift of 15 meV, a narrowing of the linewidth (full width at half maximum, FWHM) from 20.3 to 10 meV, and a clear transition of the spectral profile with the laser excitation intensity increasing four orders in magnitude. The 7-nm QW PL also has a larger blueshift and FWHM variation than the 15-nm QW as the temperature increases from 10 to ~50 K. Finally, simulations of this system which correlate with the experimental observations indicate that a thin QW must be more affected by interface fluctuations and their resulting potential fluctuations than a thick QW. This work provides useful information on guiding the growth to achieve optimized InGaAs/InAlAs QWs for applications with different QW thicknesses

    Metabolic regulation by biomaterials in osteoblast

    Get PDF
    The repair of bone defects resulting from high-energy trauma, infection, or pathological fracture remains a challenge in the field of medicine. The development of biomaterials involved in the metabolic regulation provides a promising solution to this problem and has emerged as a prominent research area in regenerative engineering. While recent research on cell metabolism has advanced our knowledge of metabolic regulation in bone regeneration, the extent to which materials affect intracellular metabolic remains unclear. This review provides a detailed discussion of the mechanisms of bone regeneration, an overview of metabolic regulation in bone regeneration in osteoblasts and biomaterials involved in the metabolic regulation for bone regeneration. Furthermore, it introduces how materials, such as promoting favorable physicochemical characteristics (e.g., bioactivity, appropriate porosity, and superior mechanical properties), incorporating external stimuli (e.g., photothermal, electrical, and magnetic stimulation), and delivering metabolic regulators (e.g., metal ions, bioactive molecules like drugs and peptides, and regulatory metabolites such as alpha ketoglutarate), can affect cell metabolism and lead to changes of cell state. Considering the growing interests in cell metabolic regulation, advanced materials have the potential to help a larger population in overcoming bone defects

    Solar-thermal conversion and steam generation: a review

    Get PDF
    Recently, steam generation systems based on solar-thermal conversion have received much interest, and this may be due to the widespread use of solar energy and water sources such as oceans and lakes. The photo-thermal desalination system becomes attractive as it can convert absorbed solar light energy into thermal energy and realise the desalination and water purification of saline water through the evaporation process. In this paper, the research status of solar-thermal conversion materials such as metal-based materials, semiconductor materials, carbon-base materials, organic polymer materials, composite photo-thermal materials and their solar-thermal conversion mechanism in recent years are reviewed. The physical process and evaluation principle of solar-thermal conversion are both carefully introduced. The methods of optimising thermal management and increasing the evaporation rate of a hybrid system are also introduced in detail. Four main applications of solar-thermal conversion technologies (seawater desalination, wastewater purification, sterilisation and power generation) are discussed. Finally, based on the above analysis, the prospects and challenges for future research in the field of desalination are discussed from an engineering and scientific viewpoint to promote the direction of research, in order to stimulate future development and accelerate commercial application

    Novel fiber bragg grating sensing method based on the sidelobe modulation for ultrasound detection

    No full text
    This contribution demonstrates the interaction between the fiber Bragg grating (FBG) and the ultrasound. When the grating length is much longer than the ultrasonic wavelength, the conventional wavelength-modulation method is invalid. In order to find out an effective sensing method, in this case, a novel sidelobe modulation has been proposed and investigated. When grating length is much longer than the ultrasonic wavelength, the Bragg wavelength is not shifted; however, the reflectivity of sidelobe is modulated by ultrasound, periodically, which can be utilized as an effective ultrasound sensing method. In order to optimize the performances of this method, the characteristics of the sidelobes are further analyzed for different ultrasonic displacement amplitude, frequency, and grating length, respectively. The analysis results indicate that a proper choice of the grating length would enable the sidelobe modulation to be utilized for detecting the ultrasound with an appropriate range of ultrasonic frequency and amplitude. This method is preliminarily validated in the experiment, and the experimental results show that our proposed sidelobe-modulation method is effective to detect the 7.8 MHz ultrasonic wave by a simple intensity-demodulation using a 5 mm FBG, where the wavelength modulation is invalid
    corecore