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Fibrotic ligament diseases (FLDs) are diseases caused by the pathological
accumulation of periarticular fibrotic tissue, leading to functional disability
around joint and poor life quality. Relaxin (RLX) has been reported to be
involved in the development of fibrotic lung and liver diseases. Previous studies
have shown that RLX can block pro-fibrotic process by reducing the excess
extracellular matrix (ECM) formation and accelerating collagen degradation
in vitro and in vivo. Recent studies have shown that RLX can attenuate
connective tissue fibrosis by suppressing TGF-β/Smads signaling pathways to
inhibit the activation of myofibroblasts. However, the specific roles and
mechanisms of RLX in FLDs remain unclear. Therefore, in this review, we
confirmed the protective effect of RLX in FLDs and summarized its mechanism
including cells, key cytokines and signaling pathways involved. In this article, we
outline the potential therapeutic role of RLX and look forward to the application of
RLX in the clinical translation of FLDs.
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1 Introduction

Fibrosis is defined as the overgrowth, hardening, and/or scarring of various tissue due to
excessive deposition of extracellular matrix (ECM) components such as collagen (Kisseleva
and Brenner, 2008; Henderson et al., 2020). Fibrosis is divided into four phases: 1) acute
injury stage, 2) inflammatory response stage, 3) fibroblast-to-myofibroblast transformation
phase, and 4) remodeling stage, including extracellular proteolysis and internal degradative
endocytosis of the fibrous matrix (Giannandrea and Parks, 2014). Fibrotic ligament diseases
(FLDs) are commonly seen in many countries all around the world and include adhesive
capsulitis, carpal tunnel syndrome, Dupuytren’s disease, cubital tunnel syndrome,
arthrofibrosis, and scleroderma. There are similar pathological changes in the above-
mentioned areas: the excessive accumulation of fibrotic tissue (Bournia et al., 2009; Kang
et al., 2014; Kang et al., 2017; Blessing et al., 2019; Ko et al., 2019).

So far, there are no ideas and effective methods to address the root cause of FLDs.
Currently, most non-surgical treatments, including physical therapy, oral anti-inflammatory
drugs, and topical steroid injections, fail to reduce collagen production and accelerate
collagen degradation to reverse the progression of fibrosis in the long term. Surgical
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treatment could eliminate the scarring but did not prevent the risk of
recurrence (Neviaser and Hannafin, 2010; Padua et al., 2016;
Ruettermann et al., 2021; Zhao et al., 2022a). Recently, multiple
studies had reported that relaxin had the potential to inhibit fibrosis
formation and reduce the risk of developing fibrosis by regulate
collagen production and degradation (Bournia et al., 2009; Kang
et al., 2014; Kang et al., 2017; Blessing et al., 2019; Ko et al., 2019).

Relaxin (RLX) is a polypeptide hormone (6 kDa) and mainly
produced by the ovaries, placenta during pregnancy as well as the
prostate gland in mammal. RLX was first reported to act on the
pubic symphysis, dilating the birth canal and facilitating fetal
delivery (Hisaw, 2016). It was later found to suppress fibrosis by
inhibiting collagen production and promoting collagen degradation
(Franklin, 1997). The RLX polypeptide family is encoded by seven
genes in humans, including three RLX genes RLN1, RLN2, and
RLN3, and four insulin-like peptide genes, INSL3,INSL4, INSL5, and
INSL6 (Samuel et al., 2017). The RLX receptor 1 (RXFP1) is a
leucine-rich-repeat (LGR)-containing G protein-coupled receptor
(GPCR) that mediates the most of biological processes of RLX-2.
Many studies have shown that RLX-2 plays a key regulatory role in
ECM remodeling (Sassoli et al., 2022).

Recombinant RLX-2 has been reported to exert anti-fibrotic
effects in fibrotic diseases of heart, liver, kidney, lung, and skin
(Unemori et al., 1996; Seibold et al., 2000; Dschietzig et al., 2006;
Bathgate et al., 2013). Table 1 summarizes the regulation of RLX in
different organs and FLDs. In recent years, RLX has been shown to
reduce the ECM formation and promote ECM degradation in a rat
shoulder joint immobilization model (Blessing et al., 2019; Kirsch
et al., 2022). However, the underlying mechanisms of RLX remain
unclear, especially the major cellular, molecular and signaling
pathways.

In this review, we provide an overview of the regulatory role of
RLX in various fibrotic diseases and summarize its mechanisms,
especially the crucial cells, cytokines and signaling pathways
involved. The effectiveness of RLX in the treatment of FLDs was
further confirmed, and the potential mechanism of RLX in the

treatment of FLDs was updated. Based on the review, the new
insights into RLX in FLDs are systematically introduced and the
potential clinical implementation of RLX as a new therapeutic target
for FLDs is highlighted.

2 Key cell involved in fibrosis

Fibrosis is a regulatable process in which many types of cells play
vital roles. Therefore, in this article, we focus on several key cells
involved in fibrosis, including fibroblasts, T cells, monocytes, and
macrophages, and the secretion of critical cytokines will also be
described such as interleukins, transforming growth factor-β1
(TGF-β1), matrix metalloproteinases (MMPs) and tissue inhibitor
of matrix metalloproteinases (TIMPs). Figure 1 outlines the cells and
cytokines involved in fibrosis.

2.1 Fibroblasts and myofibroblast

Fibroblasts, considered the major cells in most fibrotic diseases,
were activated to secrete ECM, including fibronectin, collagen types
I, III, and IV, leading to the formation of scar tissue after injury
(Bucala et al., 1994). Fibroblasts could be regulated and transformed
into myofibroblasts by factors they produced and various paracrine
signals from lymphocytes. Meanwhile, myofibroblast-derived
molecules also played a role in the transformation (Wynn, 2008).
However, the source of myofibroblasts varied in different fibrotic
diseases. In addition to resident fibroblasts, myofibroblasts could
also originate from epithelial-mesenchymal transition (EMT) of
epithelial cells, endothelial-mesenchymal transition (EndMT) of
endothelial cells, or recruitment from the bone mesenchymal
stromal cells (Bucala et al., 1994; Kalluri and Neilson, 2003;
Quan et al., 2006; Willis et al., 2006; Zeisberg et al., 2007;
Kisseleva and Brenner, 2008; El Agha et al., 2017). Although
myofibroblasts are produced differently in different fibrotic

TABLE 1 Animal models and the effect of RLX applied to different organs.

Organs Animal models Effect of RLX

Heart Myocardial ischemia model (Hirata et al. (2015); Angiotensin II mice (Wilhelmi
et al. (2020)TABLE; Transverse aortic constriction model Wilhelmi et al. (2020);
Isoproterenol induced mice (Cai et al. (2017)

Alleviating cardiac fibrosis Wilhelmi et al. (2020), Wu et al. (2018), Cáceres
et al. (2019), Samuel et al. (2014)

Liver CCL4 mouse model Ravichandra and Schwabe (2021); Bile duct ligation (BDL)
model Ravichandra and Schwabe (2021); Diethyl nitrosamine (DEN) rat model
Qu et al. (2018)

Reducing hepatic fibrosis Bennett et al. (2017)

Lung/
Trachea

Bleomycin-induced mice Liu et al. (2017); Silica aerosolized model Barbarin
et al. (2005); Fluorescein isothiocyanate induced model Roberts et al. (1995);
Irradiation-induced pulmonary fibrosis in the mouse McDonald et al. (1993);
Human fibroblasts transplantation in immunodeficient mice Phillips et al.
(2004); Ovalbumin -induced chronic allergic airways disease in mice Huuskes
et al. (2015)

Reducing fibrosis and related airway dysfunction Royce et al. (2019);
Abrogating established airway fibrosis Royce et al. (2015)

Renal Drug induced models Nogueira et al. (2017) (HgCl2, Vanadate, Adriamycin,
Uranyl nitrate, Folic acid, etc.); Surgical induced models: Ureteral obstruction
(UUO)model Chevalier et al. (2009); Kidney ischemia mice Takada et al. (1997)

Attenuating renal inflammation and fibrosis Giam et al. (2018), Li et al.
(2021), Wetzl et al. (2016), Huuskes et al. (2015)

Skin Radiation ulcers Zhao et al. (2019); Bleomycin-induced skin fibrosis Błyszczuk
et al. (2019); Skin wound healing models Wilhelm et al. (2017); Vinyl chloride
induced model Christner et al. (2000)

Attenuating skin fibrosis Corallo et al. (2019); Coentro et al. (2021)
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diseases, the stages of ECM production by myofibroblasts are
similar. First, collagen-secreting myofibroblasts are derived from
resident fibroblasts, EMTs, EndMTs, or mesenchymal stromal cells,
second, myofibroblasts produce procollagen molecules, which are
processed and assembled for release into the extracellular matrix.
The procollagen in the ECM was then modified with N-proteinases
and C-proteinases to form collagen monomers. Finally, collagen
monomers are polymerized into fibrils by fibronectin (Gelse et al.,
2003; Canty and Kadler, 2005). Fibrosis occurred when the rate of
ECM production exceeded the rate of degradation. Some findings
showed that serelaxin, a recombinant form of RLX-2, could inhibit
the differentiation of fibroblasts into myofibroblasts by inhibiting
the ALK-5/Smad2/3 pathway and increasing the ratio of MMP-2/
TIMP-2, thereby reduce collagen production (Wu et al., 2018). Since
the conversion of fibroblasts to myofibroblasts played a vital role in
fibrotic diseases, inhibition of this process became an important
basis for RLX-2 to alleviate fibrosis.

2.2 Th-2 cells and eosinophils

Among factors that induce fibrosis, cytokines secreted by Th-2
cells were first recognized to have potent profibrotic properties. The
classic cytokines released by Th-2 cells were IL-4, IL-5, IL-10, and
IL-13. Previous studies had reported that IL-4, IL-5, and IL-13 were
associated with the development of fibrosis (Mack, 2018). IL-4 is a
crucial fibrosis-promoting cytokine that exerts pro-fibrotic activity
by increasing the synthesis of collagen and other matrix proteins
(Fertin et al., 1991; Postlethwaite et al., 1992). However, recent
studies have shown that IL-4 has a dual role in promoting fibrosis
and resisting fibrosis (Izbicki et al., 2002; Huaux et al., 2003; Liang
et al., 2017; Zhang et al., 2017). IL-5 had been shown to regulate the
proliferation, mobilization, and activation of eosinophils, and
activated eosinophils could produce cytokines that promote

fibrosis. Gharaee-Kermani et al. (1998) had reported that
treatment with anti-IL-5 antibodies could reduce pulmonary
eosinophilia, cytokine expression, and fibrosis in bleomycin-
induced pulmonary fibrosis in mice. Furthermore, injection of
anti-IL-5 monoclonal antibody or the use of IL-5-deficient mice
as recipients also resulted in the lack of eosinophil infiltration or
dermal fibrosis in chronic skin allograft rejection (Le Moine et al.,
1999). Indeed, IL-5 could exert a pro-fibrotic effect by mediating the
expression of IL-13 in eosinophils (Reiman et al., 2006). At the same
time, some studies had shown that IL-13 could inhibit the
production of matrix metalloproteinase-1 (MMP-1) and MMP-3,
increase the production of tissue inhibitor of metalloproteinase-1
(TIMP-1), and play a role in promoting the production of collagen
(Oriente et al., 2000). The profibrotic effects of IL-13 were mediated
by two IL-13 receptors. On the one hand, IL-13 induced
macrophages to upregulate IL-13Ra2, and macrophages bind IL-
13 to release pro-fibrotic TGF-β1 (Fichtner-Feigl et al., 2006). On the
other hand, IL-13Ra2 had also been shown to have anti-fibrotic
properties. The results showed that overexpression of IL-13Rα2 in
mice lung attenuated bleomycin-induced lung fibrosis (Lumsden
et al., 2015). Although the role of IL-4, IL-5, and IL-13 have been
elucidated in several diseases, it was unclear whether they have
similar regulatory effects on fibrosis in FLDs. On the other hand, in
order to determine the anti-fibrotic mechanism of RLX-2, it would
be worth investigating whether RLX-2 plays an anti-fibrotic role by
regulating the secretion of IL-4 and IL-5 by Th-2 cells and the
expression of IL-13 by eosinophils.

2.3 Th-17 and Th-1 cells

T-helper 17 (Th17) cells belonged to the CD41+ T cell lineage
and were characterized by the production of interleukin 17A (IL-
17A), a founding member of the IL-17 cytokine family and a

FIGURE 1
Cells and cytokines involved in fibrosis.
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characteristic cytokine of theTh-17 cell population (Fouser et al.,
2008; Akbar et al., 2021a). Meanwhile, IL-17A was a cytokine that
mediated inflammation (Shen et al., 2009), fibrosis (Tan et al., 2013),
and pain signaling (Sun et al., 2017). Many recent reports suggested
that IL-17 had direct and indirect pro-fibrotic properties. For
example, IL-17 could play a pro-fibrotic role in liver (Tan et al.,
2013), lung (Wang et al., 2017), renal (Peng et al., 2015) and heart (Li
et al., 2014). Fibroblasts have been found to be among the most
sensitive cells to IL-17A in many fibrotic diseases. Some gene
expression data showed that the expression of IL-17A was
significantly increased in FLDs, and IL-17A increased the
sensitivity of fibroblasts in frozen shoulder tissue. Meanwhile, IL-
17A could upregulate the gene expression of COL3A1, MMP-1, and
MMP-3 by inducing mitogen-activated protein kinase, nuclear
factor κB (NF-κB), phosphoinositide 3-kinase (PI3K), and C/EBP
signaling pathways in frozen shoulder fibroblasts. Therefore
inhibition of IL-17A signaling might be a viable approach to
target fibrosis and inflammation in frozen shoulder (Akbar et al.,
2021a). In fact, IL-17A and RLX share the same downstream
signaling pathway in fibrotic diseases, but whether RLX exerts its
antifibrotic effect by regulating IL-17A levels in fibroblasts or
whether RLX and IL-17A have a crosstalk effect on fibrosis
remains to be proved experimentally.

In addition to Th-17 cells, Th-1 cells had also been found to
promote fibrosis. Th-1 cells were characterized by the production of
IFN-γ, IL-2, IL-6, IL-12, IL-21, and TNF-α (Ranieri et al., 2021).
Studies had shown that the classical Th-1 cytokine IFN-γ (Baroni
et al., 1996; Oldroyd et al., 1999) and the Th-1-inducing cytokine IL-
12 (Wynn et al., 1995; Keane et al., 2001) could attenuate fibrosis in
lung, liver and kidney fibrosis models by antagonizing the activity of
TGF-β. In contrast to IFN-γ, the Th-1 cytokine TNF-α exhibited
pro-fibrotic properties in various animal models. The results showed
that administration of TNF-alpha blockers or TNF-alpha receptor-
deficient mice reduced fibrosis in organs such as the kidney and liver
(Therrien et al., 2012; Wen et al., 2019; Zhang et al., 2019; Liang
et al., 2021). In fact, IL-6 was required for Th17 cells differentiation
(Peng et al., 2015). Studies had shown that IL-6 has pro-fibrotic
activity in lung (Ayaub et al., 2017), heart (Kumar et al., 2019),
kidney (Chen et al., 2019), liver (Xiang et al., 2018), and other organ
models of fibrosis. Other reports also confirmed that IL-6 has a pro-
fibrotic effect by regulating the TGF-β pathway (O’Reilly et al., 2014;
Zhang et al., 2012). Beiert et al. found that the pro-fibrotic effect of
IL-6 was regulated by RLX, which reduced the formation of fibrotic
tissue by reducing the level of IL-6 transcripts in the mouse heart
(Beiert et al., 2018). The finding would be a powerful force in the
evidence that RLX attenuates fibrosis.

In summary, recent studies have shown that Th17 and Th-1 cells
can induce fibrosis, so lymphocyte may play a vital role in fibrosis
and inhibiting lymphocyte activity may become a new way to inhibit
fibrosis. Meanwhile, in order to further elucidate the anti-fibrosis
activity of RLX, we speculate that RLX may exert its anti-fibrosis
effect by acting on Th-17 and/or Th-1 cells.

2.4 Macrophages

Macrophages normally had dynamic homeostatic functions,
such as clearance of tissue debris and apoptotic cells, suppression

of tissue inflammatory responses, provision of initial defense
against microbial threats, and promotion of ECM turnover. An
altered homeostatic microenvironment facilitated the
recruitment of macrophages from monocytes to defend against
threats and promote wound healing after tissue injury (Zhao
et al., 2022b). To promote fibrosis, monocyte-derived
macrophages produced a variety of factors that affect fibrosis
and tissue regeneration, mainly transforming growth factor-β1
(TGF-β1), platelet-derived growth factor (PDGF), MMPs. (Mack,
2018). Macrophage-derived TGF-β could promotes fibroblast
proliferation, activation, and collagen synthesis (Fine and
Goldstein, 1987; Clark et al., 1997; Acharya et al., 2008).
Studies have shown that macrophages played a crucial role in
the process of liver fibrosis. Macrophages activated hepatic
stellate cells by producing profibrotic factors such as TGF-β
and PDGF. Activated hepatic stellate cells (aHSCs), the main
effector cells of liver fibrosis, could be reversed into the
quiescence in vivo. Recent studies had shown that RLX-2, as
an endogenous peptide hormone, played a key role in anti-
hepatic fibrosis. Hu et al. had found that RLX-treated
macrophage-derived exosomes could convert aHSCs to a
quiescent state by upregulating miR-30a-5p, thereby exerting
anti-fibrotic effects (Hu et al., 2021).

In fact, macrophages were intricately involved in the regulation
of fibrosis. Monocyte-derived macrophages could be polarized in
several directions. IFN-γ, LPS and TNF-α could promote
M1 polarization, while IL-4, IL-13, and IL-10 could promote
M2 polarization. M1 polarized macrophages predominantly
expressed inducible nitric oxide synthase (iNOS), high levels of
IL-12, and other pro-inflammatory cytokines such as IL-1, IL-6, and
TNF-α. M2 polarized macrophages express arginase, matrix
proteins, and cytokines like IL-10, TGF-β, and IL-1 receptor
antagonist (Murray, 2017). However, the original concept of two
distinct phenotypes of macrophages, M1 and M2, had been
challenged to adequately explain the mechanisms by which
macrophages were involved in fibrosis. To further elucidate the
role of macrophages in the process of fibrosis, several studies had
divided macrophages into pro-fibrotic macrophages and anti-
fibrotic macrophages. Pro-fibrotic macrophages promoted
collagen deposition by secreting fibroblast factors (TGF-β, IL1,
IL-6, IL-12, etc.), while anti-fibrotic macrophages could not only
degrade collagen by secreting a variety of matrix degrading enzymes,
but also degrade collagen through the lysosomal pathway
(Adhyatmika et al., 2015; Zhao et al., 2022b). However, the
surface markers of pro-fibrotic macrophages and anti-fibrotic
macrophages remain unclear. Therefore, effectively distinguishing
pro-fibrotic macrophages from anti-fibrotic macrophages will help
to fully elucidate the regulatory role of macrophages in the process of
fibrosis.

In conclusion, macrophages were a double-edged sword in
fibrosis. On the one hand, macrophages appear to promote
fibrosis, and on the other hand, they appear to play a crucial role
in anti-fibrosis. In the early stages of FLDs, macrophages appear to
be the main cells that can promote fibroblast differentiation by
releasing various factors. Therefore, inhibiting macrophage activity
may be an effective way to inhibit the progression of fibrosis. In fact,
macrophages expressed abundant RXFP1 (Horton et al., 2011).
RLX-2 may promote anti-fibrotic macrophage proliferation to
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inhibit fibrosis through RXFP1. Therefore, understanding the
mechanism of how RLX-2 stimulates macrophages differentiation
in vivo is essential to fully elucidate the anti-fibrotic activity of
RLX-2.

3 Key cytokines involved in fibrosis

Fibrosis was known as a pathological process of disease
regulated by several key cytokines, including transforming
growth factor-β1 (TGF-β1), matrix metalloproteinases
(MMPs), tissue inhibitors of matrix metalloproteinases
(TIMPs) and vascular endothelial growth factor (VEGF). To
better elucidate this process, it is necessary to analyze some
important cytokines.

3.1 TGF-β1

TGF-β was cytokine family, which consists of three members
(TGF-β1, β2, and β3). Of the three forms of TGF-β, TGF-β1 had
been shown to be a master regulator of fibrosis (Meng et al.,
2016). According to the previous studies on FLDs, TGF-β1 could
promote the production and deposition of the extracellular
matrix (ECM) through the TGF-β1/Smad-3 signaling pathway
(Kim et al., 2018). The ECM represented a complex of protein
families, the most common of which was the collagen family
(Gelse et al., 2003), especially types I and III predominate in
fibrosis (Kisseleva and Brenner, 2008). Studies showed that the
expression of the COL1A2 gene was regulated by TGF-β1 (Zhang
et al., 1998; Ghosh et al., 2000). Collagen types I and III were
expressed to restore tensile strength and tissue integrity, and
TGF-β1 was an inducible cytokine required for the production of
these collagens after tissue injury during injury repair (Kim et al.,
2018). In fact, TGF-β1 was not only involved in the transcription
of type I collagen, but also could be involved in the translation of
type I collagen. It was found that TGF-β1 participated in the
expression, secretion, and deposition of collagen in the ECM by
regulating of miRNAs (Yang et al., 2013; Das et al., 2014). And
heat shock protein 47 (HSP47) and FK506-binding protein 10
(FKBP10) also played a regulatory role in procollagen assembly
and transport. These proteins prevented procollagen degradation
and premature formation during procollagen formation and
transport, however, the expression of HSP47 and FKBP10 was
regulated by TGF-β1 in fibroblasts (Bellaye et al., 2014; Staab-
Weijnitz et al., 2015; Ito and Nagata, 2017). In addition to
promoting the collagen assembly, TGF-β1 also induced the
expression of protease inhibitors, such as plasminogen
activator inhibitor 1 (PAI-1) and TIMP-3, which could
attenuate the degradation of deposited collagen by proteases
(Rabieian et al., 2018; de Oliveira and Wilson, 2020). In
summary, it had been established that TGF-β1 was involved in
the expression of collagen genes, as well as collagen transport,
deposition, and degradation. So, inhibiting the expression of
TGF-β1 could likely be an effective intervention in anti-
fibrosis. Interestingly, serelaxin, a recombinant relaxin-2, had
been proved to suppress the TGF-β1/IL-1 axis to inhibit
myofibroblast differentiation and collagen deposition by

targeting TLR-4 and NLRP3 inflammatory bodies in cardiac
myofibroblasts (Cáceres et al., 2019). However, how RLX-2
alleviates fibrosis by regulating the TGF-β signaling pathway
in FLDs remains unclear. Therefore, a large amount of
experimental evidence is still needed.

3.2 MMPs and TIMPs

Matrix metalloproteinases (MMPs), belonging to a multigene
family secreted by connective tissue cells and inflammatory
phagocytes, played a key role in ECM remodeling due to their
ability to degrade many matrix components, growth factors and
cytokines (Nagase and Woessner, 1999). Under physiological
conditions, the proteolytic activity of MMPs was tightly
controlled by their endogenous protein inhibitors (TIMPs)
(Gomez et al., 1997). During fibrosis, MMPs and TIMPs were
unbalanced, MMPs activity was inhibited and TIMPs expression
was increased, ECM was protected, and collagen degradation was
reduced. Myofibroblasts at the site of injury were driven by
inflammatory factors to synthesize new collagen during fibrosis.
When the rate of collagen synthesis exceeded the rate of degradation,
abnormal collagen would be deposited in ECM, further leading to
fibrosis and pathological remodeling of tissue and organs (Van
Linthout et al., 2014). Indeed, the biological roles of MMPs in
fibrosis were not fully established, but they appeared to vary with the
particular family member, the tissue involved and the stage of the
fibrotic response. Notably, some members of this family exhibited
pro-fibrosis effects, while others act as anti-fibrotic molecules. For
example, MMP-13 expression levels were elevated in early stages of
liver fibrosis models (Watanabe et al., 2000). Notably, high
expression level of MMP-13 resulted in upregulation of pro-
fibrotic cytokines such as IL-1α, IL1β and TNF-α, suggesting that
the matrix metalloproteinase family was not only involved in
collagen degradation but also in the process of collagen
formation. Studies described the interaction of MMPs and TIMPs
in fibrosis. The results showed that MMP-2 was activated after the
interaction of MMP-14 and TIMP-2 (Bassiouni et al., 2021) and
activated MMP-2 could inhibit cardiac fibrosis by inhibiting TIMP-
1 (Onozuka et al., 2011). Silicosis was a common condition
associated with pulmonary fibrosis. Some results indicated that
RLX could improve silica-induced pulmonary fibrosis by
increasing MMP-2 expression (Li et al., 2013). In addition to
MMP-2, MMP-1 was also involved in fibrosis. In a
thioacetamide-induced liver fibrosis model, after infection of rats
with recombinant adenovirus, Ad5MMP-1 (human pro-human
matrix metalloproteinase-1 complementary DNA), rat liver
fibrosis was attenuated and the high expression level of MMP-1
increased hepatocyte proliferation while also caused an appropriate
amount of damage to other tissue (Iimuro et al., 2003). In the
experiment studying the effect of RLX on the cervix, Gerson Weiss
found that RLX could significantly increase the expression levels of
MMP-1 and MMP-3, and significantly inhibit the expression of its
endogenous inhibitor TIMP-1 to prepare for labor (Weiss and
Goldsmith, 2005). In addition to MMP-1 and MMP-2, studies
had also shown that MMP-8 had an anti-fibrotic effect. Similar
to studies involving MMP-1, MMP-8-carrying adenovirus induced
the degradation of type I and type III matrix collagens in mice by
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increasing the expression of MMP-2 and MMP-3 to reduce liver
fibrosis (Siller-López et al., 2004). RLX could also affect the
expression of MMP-8. Studied showed that RLX could
significantly increase the expression of MMP-1 and MMP-8 in
human periodontal ligament (hPDL) cells in vitro over time,
further regulating collagen metabolism (Hirate et al., 2012).

Four distinct members have been identified in mammals:
TIMP-1, TIMP-2, TIMP-3, and TIMP-4 (Hemmann et al., 2007).
TIMPs, as an endogenous inhibitor of MMPs, also played a
crucial role in the occurrence and development of fibrosis.
TIMPs varied in different fibrotic diseases. In a mouse model
of liver fibrosis, H Yoshiji found that TIMP-1 overexpression
resulted in more severe fibrosis in a mouse liver fibrosis model,
but had no significant effect on collagen synthesis (Yoshiji et al.,
2000), whereas an increase in fibrosis was observed in mice whose
TIMP-1 gene had been knocked out (Timp-1−/− mice) (Wang
et al., 2011). However, results from mouse models of unilateral
ureteral obstruction (UUO) and protein overload-induced renal
fibrosis showed that TIMP-1 deficiency had no effect on disease
severity (Eddy et al., 2000; Kim et al., 2001). Therefore, TIMP-1
might not be a determinant for promoting liver fibrosis. In
addition to TIMP-1, TIMP-2 had also been shown to be a
potent pro-fibrotic factor. In a CCL4-induced liver fibrosis
model, TIMP-2 siRNA knockdown mice exhibited suppression
of hepatic stellate cells and reduced collagen deposition,
suggesting a pro-fibrotic role for TIMP-2 (Hu et al., 2007).
RLX had the effect of decomposing collagen, which had been
confirmed in previous studies and reports studies. Some studies
had also clarified that the anti-fibrosis effect of RLX was related to
TIMP-1 and TIMP-2. Williams et al. (2001) found that RLX
mediated the reduction of collagen deposition not only directly
by reducing type I collagen synthesis, but also indirectly by
reducing the expression of TIMP-1 and TIMP-2. Similar to
TIMP-1 and TIMP-2, the effect of TIMP-3 in fibrotic diseases
deserved attention. In TIMP-3−/− mice with bleomycin-induced
pulmonary fibrosis, the level lung fibrosis was increased and
persisted, and it was also found that despite an overall increase in
metalloproteinase activity, TIMP-3−/− mice Pulmonary fibrosis
was enhanced (Gill et al., 2010), suggesting that the function of
MMPs could not be understood merely as the degradation or
removal of ECM. Like pulmonary fibrosis, kidney fibrosis was
enhanced in TIMP-3−/− mice had aggravated renal fibrosis after
2 weeks of unilateral ureteral obstruction (UUO), and Kassiri
suggested that the protective effect of TIMP-3 was due to
inhibition of TNF-α-mediated renal fibrosis and regulation of
expression of multiple MMPs (Kassiri et al., 2009). This study
contrasted with a previous study in which Kawamoto found no
difference in renal fibrosis between wild-type and TIMP-3−/−

mice after 7 days of UUO treatment. However, they detect
increased metalloproteinase activity and turnover of TGF-β1
in TIMP-3−/− mice (Kawamoto et al., 2006). Some reports had
shown that Dupuytren myofibroblasts treated with adenoviral
RLX construct showed increased TIMP-3 protein expression.
These results suggested that TIMP-3 might play a protective
role in fibrotic diseases.

In fact, in the existing RLX studies of FLDs, there are certain
differences in the expression of MMPs and TIMPs in diseases,
which may explain that fibrosis is a dynamic pathological

process involving many cells and cytokines. However, the
regulatory roles of RLX on MMPs and TIMPs remain
unclear. We speculate that RLX plays an anti-fibrotic role by
promoting the expression of MMPs and downregulating the
expression of TIMPs, but which MMPs and TIMPs play crucial
roles in anti-fibrosis remains to be determined. Therefore,
elucidating the specific role of MMPs and TIMPs in collagen
degradation can not only explain the anti-fibrotic activity of
RLX, but also provide some reference indicators for other
antifibrotic studies.

3.3 VEGF

Previous studies on fibrosis in liver (Yang et al., 2014), lung
(Barratt et al., 2017) and other organs have shown that inhibiting
vascular endothelial growth factor (VEGF) expression could
alleviate fibrosis. Recently, studies had reported that VEGF
might play a vital role in anti-fibrosis (Chellini et al., 2018).
At the same time, studies had shown that RLX could induce
endometrial stromal cells, cardiac fibroblasts, and THP-1
monocytes to produce VEGF (Unemori et al., 2000; Palejwala
et al., 2002; Formigli et al., 2007; Sarwar et al., 2015) and induce
angiogenesis, thereby enhancing tissue perfusion, especially
ischemia-reperfusion organs to promote wound healing.
Although the property of VEGF had been shown to inhibit the
TGF-β -1 mediated epithelial-mesenchymal transition by
inhibiting myofibroblast differentiation (Hong et al., 2013;
Chellini et al., 2018), more experiments were needed to
determine whether VEGF played an anti-fibrotic role in FLDs
and whether anti-fibrotic activity of RLX was partially induced by
VEGF. In some experiments, we found that TGF-β-Smad2/
3 signaling pathway can mediate the expression of VEGF to
promote angiogenesis (Xi et al., 2021). Abnormal angiogenesis is
the early pathological manifestation of FLDs (Zhao et al., 2021).
We speculate that the anti-fibrotic effect of RLX may be mediated
by inhibiting the TGF-β-Smad2/3 signaling pathway, which
inhibits the production of VEGF and then exerts anti-fibrotic
effects in the early stage of the disease. However, reliable
experimental evidence is still needed.

4 Key anti-fibrotic signaling pathways
of RLX

Pathological tissue remodeling was considered a hallmark of
fibrosis (Eming et al., 2017). The molecular mechanisms leading to
fibrosis were complex. Fibrosis was a dynamic process with strong
plasticity, and a variety of signaling pathways participate in the
regulation of the occurrence and development of fibrosis. However,
the anti-fibrotic mechanism of RLX in FLDs remains unclear. To
fully elucidate the potential signaling pathways of RLX in FLDs, we
analyzed signaling pathways known to suppress organ fibrosis.
Table 2 summarizes the main signaling pathways and roles of
RLX in fibrosis. RLX appears to inhibit the myofibroblast
differentiation, activate MMPs, and neutralize the effects of TGF-
β1 to suppress fibrosis through these pathways (as shown in
Figure 2).
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4.1 TGF-β1 / Smads pathways

Among the many cytokines, TGF-β1 was the main factor in
regulating fibrosis (Wynn, 2008). TGF-β1 could regulate
fibrogenesis in the heart (Tian et al., 2021), liver (Gough et al.,
2021), kidneys (Chen et al., 2018), and pulmonary (Eser and Jänne,
2018) through canonical and non-canonical pathways. The
canonical pathway was Smad-dependent pathways. In renal
fibrosis, TGF-β1 activated myofibroblasts, promoted ECM
formation and inhibit ECM degradation through the above
signaling pathways (Meng et al., 2016). Some findings showed
that serelaxin could alleviate cardiac fibrosis by inhibiting the

enrichment of phosphorylated Smad2/3 at the RLX receptor 1
(Rxfp1) promoter region (Wilhelmi et al., 2020). In addition to
canonical signaling pathways, non-canonical pathways also played a
role in fibrosis. Non-canonical pathways were Smad-independent
pathways, including mitogen-activated protein kinase (MAPK),
phosphatidylinositol -3- kinase (PI3K) and Rho-like GTPase
(Rho). Studies had shown that RLX also exerted an anti-fibrosis
effect via MAPKs and PI3K-mediated signaling pathways. MAPK-
ERK1/2 were G protein-activated serine/threonine kinases involved
in a variety of fundamental cellular processes which play a key role in
signal transduction (Sánchez et al., 2018). RLX had been shown to
upregulate the expression of vascular endothelial growth factor

TABLE 2 Signaling pathways and effect involved in RLX.

Cells Key signaling pathways Effect of RLX

Human coronary artery endothelial cells (HCAECs) and
mouse cardiac endothelial cells (MCECs) Wilhelmi et al.
(2020); Renal myofibroblasts Meng et al. (2016) Human
endometrial stromal cells Zhang et al. (2002); Human
umbilical vein endothelial, epithelial, and vascular
smooth muscle cells Dschietzig et al. (2003);
H9c2 cardiomyocytes Boccalini et al. (2018)

TGF-β1 -pSmad2/3 Meng et al. (2016); Wilhelmi et al.
(2020); TGF-β1-MAPK-ERK1/2 Zhang et al. (2002);
TGF-β1-PI3K Sánchez et al. (2018); Valkovic et al. (2019)

Angiogenesis Zhang et al. (2002); Vasodilation Zhang
et al. (2002); Valkovic et al. (2019); Apoptosis Valkovic
et al. (2019); Anti-fibrosis Meng et al. (2016); Valkovic
et al. (2019); Wilhelmi et al. (2020)

Mast cells Masini et al. (1994); Lung fibroblasts Huang
et al. (2011); Renal myofibroblasts Wang et al. (2016);
Vascular endothelial cells Bani-Sacchi et al. (1995);
Smooth muscle cells Bani et al. (1998)

nNOS and eNOS-NO/cGMP and iNOS - NO/cGMP
Nistri and Bani (2003); ET1-32-ET-B-eNOS-NO/cGMP
Conrad and Novak, (2004)

Vasodilation Bani-Sacchi et al. (1995); Bani et al. (1998);
Anti-fibrosis Huang et al. (2011); Wang et al. (2016);
Wetzl et al. (2016); Stimulating the production of
endogenous NO Nistri and Bani (2003); Conrad and
Novak (2004)

Human coronary artery endothelial cells (HCAECs) and
mouse cardiac endothelial cells (MCECs) Wilhelmi et al.
(2020) Mouse cardiac muscle cells and rat
H9c2 cardiomyoblasts Frati et al. (2015)

Notch-1Wilhelmi et al. (2020) Sphingosine-1-phosphate
(S1P) Frati et al. (2015)

Anti-fibrosis Frati et al. (2015); Wilhelmi et al. (2020)

Myofibroblast Samuel et al. (2017); Rat kidney
myofibroblasts Chow et al. (2014)

RXFP1-TGF-βR Samuel et al. (2017) RXFP1-AT2R
Chow et al. (2014)

Anti-fibrosis Chow et al. (2014); Samuel et al. (2017)

FIGURE 2
Schematic drawing of the main anti-fibrotic signaling transduction mechanisms of RLX/RXFP1.
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(VEGF) by activating p42/44 mitogen-activated protein (MAP)
kinase and MAPK (or ERK) kinase (MEK) (Zhang et al., 2002),
thereby further inducing angiogenesis and activating endothelin-B
(ET-B) receptors, causing vasodilation. In fact, RLX indirectly
exerted anti-fibrotic effects by stimulating microvascular dilation
(Dschietzig et al., 2003). The PI3K/Akt signaling pathway was also a
typical G protein-dependent pathway, which was involved in the
regulation of cell survival, proliferation and apoptosis. Activation of
RXFP1 had been shown to activate PI3K/Akt signaling pathway in
THP-1 monocytes, rat endothelial cells, mouse fibrochondrocytes,
and H9c2 rat embryonic myocardial precursor cells (Boccalini et al.,
2018). RLX could exhibit vasodilatory, anti-apoptotic and anti-
fibrotic effects through the PI3K/Akt pathway (Valkovic et al.,
2019). In fact, Rho GTPases were also involved in the
pathogenesis of fibrosis. Findings showed that GTP-bound active
Rho could interact with downstream effector proteins, such as the
Rho-associated coiled-coil protein kinase (ROCK) and mouse
hyaline-associated formin-1 (mDia1), to initiate and stabilize
actin. Activation of Rho had been shown to lead to the
formation of F-actin stress fiber and reduce the abundance of
G-actin monomers to expose the nuclear localization sequence of
myocardia-related transcription factor (MRTF). MRTF could
accumulate in the nuclear and cooperate with serum response
factor (SRF) to induce and maintain myofibroblasts activation,
thereby promoting massive collagen production (Tsou et al.,
2014). However, it remains to be seen whether RLX can act as an
anti-fibrotic factor by regulating Rho GTPases.

A large number of studies have shown that RLX may play an
anti-fibrotic role by regulating the TGF-β1/Smads signaling
pathway. However, it is unclear how RLX regulates collagen
production by inhibiting TGF-β1/Smads signaling, which may
be due to direct downregulation of the expression of pro-fibrotic
factors by inhibiting TGF-β1/Smads signaling in FLDs.
Therefore, the impact of the interaction between the RLX and
TGF-β1/Smads signaling impacts on FLDs warrants further
investigation.

4.2 Nitric oxide synthases/NO/cGMP

The effect of RLX on NO had been demonstrated
experimentally, and the results showed that RLX could exert a
vasodilator effect on vascular endothelial cells and smooth
muscle cells via the NO/cGMP system (Bani-Sacchi et al.,
1995; Bani et al., 1998). Subsequent studies in vitro and in
vivo revealed that RLX played a key role in anti-fibrosis via
the NO/cGMP systems (Chow et al., 2012; Fallowfield et al., 2014;
Wang et al., 2016; Bani, 2020). Nistri and Bani found that RLX
could induce the activation of NO synthases, including neuronal
nitric oxide synthase (nNOS) and endothelial nitric oxide
synthase (eNOS), through PI3K/AKT signal pathway, and that
RLX could promote the synthesis of inducible nitric oxide
synthase (iNOS) via cAMP/PKA and/or ERK1/2 (Nistri and
Bani, 2003). In addition to directly promoting the NO/cGMP
system, studies also showed that RLX could converted large
endothelin (ET)-1 to biologically active ET1-32 by inducing
MMPs activation, binding to ET-B receptors to induce eNOS
activation, which activated the NO/cGMP system on turn

(Conrad and Novak, 2004). In fact, RLX appeared to
indirectly exert an anti-fibrosis effect by stimulating the
production of endogenous nitric oxide (NO) to stimulate
microvascular dilation. Some findings showed that RLX could
activate the NO/cGMP signaling pathway in lung fibroblasts and
attenuated lung fibrosis (Huang et al., 2011). Meanwhile, RLX
played an anti-fibrotic role in kidney myofibroblasts through
activating the NO-cGMP-dependent pathway (Wang et al., 2016;
Wetzl et al., 2016). Although fibroblasts and myofibroblasts are
the main cells involved in fibrosis, vascular endothelial cells are
also involved. We suspect that RLX exerts anti-fibrotic effects not
only directly on myofibroblasts but also indirectly by affecting the
microenvironment at the site of fibrosis such as tissue perfusion.
However, this hypothesis requires experiments to prove.

4.3 Notch-1 and sphingosine-1-
phosphate (S1P)

In recent years, increasing evidence had shown that RLX could
inhibit connective tissue fibrosis by activating Notch-1 and
sphingosine kinase/S1P signaling pathways (Sassoli et al., 2013;
Frati et al., 2015). TGF-β1 induces fibrosis by downregulating
Notch-1 signaling by activating transient receptor potential-
canon channel (TRPC) ion channels (Sassoli et al., 2016) and
voltage-gated gap junctions (Squecco et al., 2020). Wilhelmi et al.
(2020) had demonstrated that serelaxin could inhibit TGFβ1-
induced endothelial-mesenchymal transition by preserving Notch
signaling in endothelial cells in myocardial fibrosis. Meanwhile,
RLX-2 has been shown to increase sphingosine kinase activity and
S1P expression and attenuate cardiac fibrosis by accelerating the
secretion of MMP-2 and MMP-9 (Frati et al., 2015). Although these
results suggest that RLX may exert anti-fibrotic effects through the
activation of cardiac Notch-1 and sphingosine kinase/S1P pathways,
the mechanism of action of these signaling pathways in FLDs
remains unclear.

4.4 Crosstalk with other receptors and
signaling pathways

In addition to directly relying on the function of RXFP1 and
its signal transduction mechanism, RLX appeared to inhibit
fibrosis through crosstalk with other receptors or other
signaling pathways, mainly TGF-β1 receptor and the
angiotensin II type 2 receptor (AT2R). Samuel et al. (2017)
found that RLX could interfere with the phosphorylation of
Smad2/3 and inhibit TGF-β1/TGF-βR signaling to reduce
myofibroblast activation and ECM deposition. Besides, Dr.
Byrna Chow and others demonstrated that AT2R antagonists
could significantly block the anti-fibrotic effects of RLX in vitro
and in vivo. When RLX was applied to AT2R knockout mice, it
was shown that the anti-fibrotic effect of RLX requires
activation of the RXFP1-AT2R heterodimer (Chow et al.,
2014). The above results may provide a new direction for
studying the anti-fibrotic effect of RLX in FLDs. However,
applying RLX to FLDs requires the study of crosstalk between
RLX and other receptors and signaling pathways. On the one
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hand, this will help prevent the weakening of the anti-fibrotic
effect of RLX when it is used in combination with other drugs,
and on the other hand, it will help to fully elucidate the
pharmacological effects of RLX.

5 Regulation and mechanism of RLX in
fibrotic ligament diseases

The pathological process of fibrotic ligament diseases (FLDs) is
similar to other fibrous organ diseases, all of which are abnormal
accumulation of collagen. RLX, as an endogenous peptide hormone,
originally found to lengthen the pubic ligament, soften the organs of
the birth canal and prepare for labor through the process of collagen
breakdown in the pubic symphysis (Hisaw, 2016). Due to the
destructive nature of collagen, several studies have been
performed to investigate the effect of RLX in FLDs. Current
evidence suggests that RLX attenuates fibrosis by inhibiting the
recruitment and activation of myofibroblasts and reducing the
expression of cytokines such as TGF-β1 (Samuel et al., 2004;
Heeg et al., 2005; Mookerjee et al., 2009; Bennett et al., 2014),
IL-1β (Unemori and Amento, 1990; Pini et al., 2016; Beiert et al.,

2017) and TNF-α (Brecht et al., 2011; Yoshida et al., 2013), ect. In
addition, RLX alleviates the fibrotic process by affecting certain
signaling pathways such as TGF-β1-Smad2/3 signaling pathway.
Based on the mentioned above findings, the authors analyzed the
existing studies on the application of RLX in FLDs. Table 3
summarizes the human tissue sample obtaining methods and
animal models for FLDs. At the same time, we investigated the
role of RLX in fibrotic ligament diseases in Figure 3.

5.1 Frozen shoulder

Frozen Shoulder (FS) is a disorder characterized by limited
active and passive shoulder movement (Zuckerman and Rokito,
2011). The pathology and stages of this disease are related to
inflammation and the formation of extensive fibrotic tissue. It
was found that the pathophysiological changes of FS were
consistent with the obvious increase of ECM collagen, mainly
COL 1a1 and COL 3a1, and the inflammatory factors were
significantly increased. Previous studies had shown that
fibroblasts were the most abundant cell type in the shoulder joint
capsule of FS compared with normal joint capsules and played a key

TABLE 3 Obtaining human Tissue samples and animal models utilized in the study of FLDs.

Diseases Human tissue samples Surgical/Drug-induced animal/tissue models

Frozen shoulder Patients with primary frozen shoulder undergoing surgical arthroscopic
capsular release Akbar et al. (2021b)

Rats immobilized shoulder by molding plaster Cho et al. (2019)

Rats immobilized the humerus to the scapula Oki et al. (2015); Blessing et al.
(2019)

Rats model by injecting adenovirus-TGF-β1 into rats’ shoulder capsule Chen
et al. (2021)

Dupuytren’s disease Dupuytren’s nodule from the involutional stage during partial
fasciectomy Kang et al. (2014)

Dupuytren’s disease fibroblasts transplanted to the forepaw of the athymic rat
Satish et al. (2015)

Dupuytren’s tissue samples transplanted onto chick embryo chorioallantoic
membrane Mîndrilă et al. (2014)

Carpal tunnel
syndrome

SSCT harvested during open carpal tunnel release Kang et al. (2017) Hypertonic dextrose injections on the subsynovial connective tissue of rabbit
Yoshii et al. (2014)

Non-human primate model of carpal tunnel syndrome Sommerich et al.
(2007)

Altering carpal tunnel pressure for carpal tunnel syndrome of rabbit model
Diao et al. (2005)

Cutting the flexor digitorum superficialis tendon of rabbit Chikenji et al.
(2014)

Performance of a high-repetition, high-force task induces carpal tunnel
syndrome in rats Clark et al. (2004)

Scleroderma Biopsies on mid-forearm Giordano et al. (2012); Corallo et al. (2019) Hypochlorous Acid Induced Mouse Model Meng et al. (2019)

Xenotransplant mouse model of scleroderma Ross et al. (2021)

AnimalModels of Scleroderma: Current State and Recent Development Asano
and Sato (2013)

Arthrofibrosis Knee OA and severe flexion contractures Ko et al. (2019) Immobilizing knee in rats Hagiwara et al. (2008); Sasabe et al. (2017);
Baranowski et al. (2019)

Patellar Tendon Fibrosis in a Rabbit Overuse Model Liu et al. (2020)

Binding Protein 10 losing mouse model Lim et al. (2021) ACLR-induced
arthrofibrosis in rats Kaneguchi et al. (2021)
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role in determining where inflammation occurs and promoting its
persistence (Rodeo et al., 1997; Tchou et al., 2013). Once activated,
fibroblasts produced TNFα, IL-1, IL-6, cyclooxygenase-2, the
polysaccharide hyaluronan and inflammatory chemokines,
thereby sustaining leukocyte recruitment to the inflamed
synovium (Akbar et al., 2019). Furthermore, the transition from
fibroblasts to myofibroblasts during frozen shoulder might be
regulated by TGF-β1, and RLX-2 might reduce collagen
expression by inhibiting TGF-β1 signaling in FS. Experiments
have proved that continuous low-dose injection of RLX-2 into
the animal shoulder joint of rats could effectively improve the
range of motion of the adhesive shoulder joint, and proved That
RLX-2 could effectively prevent the excessive production of
myofibroblasts (Blessing et al., 2019). However, there were
insufficient studies in vitro on the molecular mechanism of
RLX in synovial fibroblasts of FS. Since frozen shoulder
pathologically was involved in abnormal blood vessel
proliferation (Zhao et al., 2021), we suspected that RLX might
inhibit fibrosis by regulating the formation of blood vessels in the
shoulder joint. Therefore, in vivo studies on RLX treatment for
frozen shoulder were still needed. To improve the metabolic
efficiency of the RLX-2, follow-up studies found that RLX-loaded
Poly lactide coglycolide (PLGA) microparticles (MPs) could
effectively exert the anti-fibrotic effect of RLX and significantly
increased the duration of RLX activity. The study by Kirsch et al.
(2022) showed that RXFP1 was also expressed in periarticular tissue
of the shoulder joint of FS patients. These results suggested RLX
might represented a novel therapeutic target for the treatment of
frozen shoulder. However, the dose and method of RLX-2 in the
treatment of human shoulder joints still need to be further research,
and relevant clinical trials were also worthy of consideration.
Current primary non-surgical treatments are ineffective in
relieving the progression of frozen shoulder because there is no
effective way to break down the accumulated collagen. RLX-2
can inhibit collagen production and promotes collagen
breakdown. The potent anti-fibrotic activity of RLX-2 opens a

new avenue for the treatment of frozen shoulder. Therefore,
RLX-2 may represent a potential therapeutic target for the
treatment of frozen shoulder.

5.2 Dupuytren’s disease

Pathologically, Dupuytren’s disease is characterized by
fibrotic tissue hyperplasia and contracture of the palmar
fascia. Finger cramps and dysfunction may occur at the end of
the disease (Badalamente et al., 1983; Black and Blazar, 2011;
Karbowiak et al., 2021). Histologically, the initial phase of the
disease process was characterized by the thickening of small
nodules composed of proliferative cells and fibroblasts (Shih
and Bayat, 2010). Furthermore, increased collagen synthesis,
upregulation of reactive MMPs, and downregulation of TIMPs
were main changes in the molecular biology of Dupuytren’s
disease (Kang et al., 2014). Currently the best treatment for
this disease is surgery, including open fascial resection, closed
fasciectomy, and acupuncture fasciectomy (Ruettermann et al.,
2021). However, surgical treatment did not always relieve
symptoms and postoperative stiffness was common, and the
recurrence rate was high (Karbowiak et al., 2021). Therefore,
surgeons hope to slow or stop the progression of the disease by
reducing the production of ECM early in the disease. Masterson
et al. (2004) found that recombinant human RLX, as an effective
anti-fibrotic medium, could promote renal matrix remodeling by
promoting fibroblast proliferation, reducing α-SMA expression,
and collagen synthesis. Likewise, in a bleomycin-induced human
lung fibrosis study, the results showed that RLX could alter the
connective tissue phenotype of human lung fibroblasts, reduce
the TGF-β1- induced expression of type I and type III
procollagen, promote the synthesis and secretion of MMP-1
and reduce collagen deposition (Unemori et al., 1996). To
investigate whether RLX could downregulate collagen
synthesis and matrix metalloproteinase expression, Kang et al.

FIGURE 3
The effects of RLX in fibrotic diseases of the ligaments. Image sources of Dupuytren’s disease (Karbowiak et al., 2021) and Scleroderma (Orteu et al.,
2020) are from references.
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(2014) found that collagen type I and type III mRNAs were
significantly reduced in myofibroblasts from patients with
Dupuytren’s nodes after transfection with an adenoviral RLX
construct (Ad-RLX). Moreover, some studies showed that the
total collagen synthesis was reduced in cultured cells exposed to
Ad-RLX compared to virus and saline controls. Interestingly, as
the expression of RLX gene increased, the expression levels of
MMP -1 and MMP-13 were significantly decreased (Kang et al.,
2014). RLX appeared to slow disease progression by inhibiting
collagen formation rather than breaking down collagen in
Dupuytren’s disease. Therefore, the use of RLX in Dupuytren’s
disease should be initiated at an early rather than mature stage.
Although experiments in vitro provided the possibility for the
non-surgical treatment to Dupuytren’s disease, few studies had
demonstrated efficacy using recombinant RLX in animal model
of Dupuytren’s disease, and convincing clinical evidence was
lacking.

5.3 Carpal tunnel syndrome

Carpal tunnel syndrome (CTS) was a series of symptoms
caused by compression of the median nerve in the carpal tunnel
and was the most common peripheral nerve compression
disorder (Padua et al., 2016). Non-inflammatory fibrosis and
thickening of subsynovial connective tissue (SSCT) were
common pathological manifestations of CTS (Ettema et al.,
2006). Biochemical studies had shown that human SSCT was
composed of type I, III and VI collagen and proteoglycans
(Ettema et al., 2004). It was found that SSCT fibrosis was
associated with increased activity of TGF-β1, which could
upregulate fibroblasts proliferation and activation of
(Verrecchia and Mauviel, 2002; Ettema et al., 2004). In
addition, TGF-β1 could also protect ECM by inhibiting the
activity of MMPs and inducing the synthetic of protease
inhibitors such as plasminogen activator inhibitors-1 and
TIMPs (Mauviel, 2005). RLX could attenuate fibrosis by
reducing collagen deposition, mainly by inhibiting
myofibroblast production and modulating MMPs/TIMPs
expression. Because of this property, several studies aimed to
investigate the antifibrotic effect of RLX on subsynovial
fibroblasts from CTS patients. Subsynovial fibroblasts from
CTS patients were transformed into subsynovial
myofibroblasts by TGF-β1 and then genetically modified using
Ad-RLX. After RLX gene expression, compared with the control
group, the expression of MMPs mRNA increased, among which
the expression of MMP-1, MMP-3, MMP-8, MMP-9 were
increased significantly and the expression of α-SMA,
fibronectin, phospho-Smad2, TIMP-1, and TIMP-4 were
decreased significantly (Kang et al., 2017). RLX appeared to
not only reduce the synthesis of ECM by reducing the
expression of fibronectin, α-SMA, phospho-Smad2 and other
components, but also prevent the occurrence and development of
carpal tunnel syndrome fibrosis by increasing the expression of
MMPs and reducing TIMPs. Although RLX showed anti-fibrotic
activity in CTS synovial fibroblasts, an additional study in vivo
and clinic trials were needed to prove that RLX could improve the
symptom of carpal tunnel syndrome.

5.4 Scleroderma

Scleroderma or systemic sclerosis was a complex chronic
connective tissue disease that primarily results in thickening and
hardening of the skin in addition to interstitial fibrosis of various
internal organs including lungs, heart, kidneys, gastrointestinal tract,
blood vessels (Denton and Black, 2000; Simms and Korn, 2002;
Denton and Khanna, 2017). Under the stimulation of various
cytokines and growth factors, fibroblasts differentiated into
myofibroblasts, which synthesized a large amount of matrix
proteins, mainly collagen, leading to scar formation and tissue
thickening. Due to the complexity and heterogeneity of
scleroderma, there was currently no optimal disease-modifying
treatment. As early as 1958, Casten proposed the conjecture that
sagging skin in patients with scleroderma might be related to the
effect of RLX on collagen fibers and the idea of using RLX to treat
scleroderma (Casten and Boucek, 1958). Before the discovery of
recombinant human RLX, the use of RLX in the treatment of
scleroderma was hampered by the low purity of RLX isolated
from animals. With the development of recombinant human
RLX-2 (hrRLX-2), a potent anti-fibrotic hormone, RLX-2 has
been tested to improve fibrosis in systemic sclerosis (SSc). Studies
of a progressive scleroderma model by knockout of the mouse RLX
gene (RLX−/−) had shown that mice lacking the RLX gene develop
age-related skin fibrosis and thickening with abundant collagen over
time increased and developed at the age of 1 month. The results
showed that removing the RLX gene in mice led to a gradual
accumulation of collagen in the skin, leading to fibrosis and
thickening of dermis, implying that RLX had a regulatory effect
on excessive collagen deposition or related skin diseases
characterized by fibrosis. However, hrRLX-2 treatment of RLX−/−

mice resulted in complete reversal of skin fibrosis when applied to
the early stages of the disease, but was ineffective when applied to a
more mature stage of skin scars, during the 2-week treatment period,
and RLX could inhibit TGF-β-induced collagen synthesis and
secretion only when continuously exposed to human dermis,
whereas collagen secretion was restored after short-term exposure
(Samuel et al., 2005). A study showed that serum RLX levels were
higher than normal in SSc patients, suggesting a defensive response
to the fibrotic process (Giordano et al., 2005). Based on these results,
we propose that RLX appears to act primarily as an anti-fibrotic
agent in the early stages of fibrosis, or that adherence to RLX
treatment is effective in reducing collagen deposition. New drug
delivery systems or alternative therapies are needed to allow RLX
work longer.

Subsequently, in a clinical trial of recombinant human RLX
for scleroderma, it was found that long-term continuous
subcutaneous injection of recombinant human RLX
significantly reduced skin thickening and severity in patients
with stable and moderate-to-severe diffuse scleroderma (Seibold
et al., 2000). However, in another clinical study, subcutaneous
administration of recombinant human RLX for 24 weeks did not
significantly improve the patient’s overall skin score, lung
function, compared with placebo, and an association between
relaxin and serious renal adverse events was also noted. Note that
blood pressure and renal function must be closely monitored
when RLX is used for conditions other than scleroderma (Khanna
et al., 2009). Meanwhile, a recent study on RLX in scleroderma
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showed that the expression of RXFP1 on the surface of fibroblasts
in patients with scleroderma was reduced, thereby reversing the
anti-fibrotic effect of RLX in systemic scleroderma, and Corallo
et al. (2019) found that RXFP1 was normally expressed in normal
fibroblasts and RLX could counteract TGF-β1-driven
upregulation of α-SMA via RXFP1. Therefore, restoring
RXFP1 expression in fibroblasts from scleroderma patients
contributes to the anti-dermal fibrotic effect of RLX. Currently
there is insufficient research on the use of RLX in systemic
sclerosis. This is mainly due to the lack of sufficient phase III
clinical trial evidence to demonstrate efficacy of RLX in the
treatment of scleroderma. This may be related to renal injury
after systemic administration of RLX. Therefore, the
administration method and dosage of RLX need further study.
Despite many encouraging results, clinical trials of RLX in
scleroderma or systemic sclerosis are lacking.

5.5 Arthrofibrosis

Arthrofibrosis was the accumulation of collagen in the joints,
usually following trauma, surgery, inflammation, prolonged
joint immobilization, or idiopathic disease (Papagelopoulos
et al., 2006; Bamshad et al., 2009; Cheuy et al., 2017; Le et al.,
2017). Although the causes of arthrofibrosis vary, there was a
large amount of fibrotic tissue pathologically in fibrotic joint.
Current treatment options for patients with arthrofibrosis were
limited in scope and effectiveness. Non-surgical treatments
could only be used as mild or temporary treatment to relieve
symptoms. However, surgery can lead to further deterioration
and complications (Usher et al., 2019). In order to clarify
molecular biology of arthrofibrosis, Hagiwara et al. (2008)
found that TGF-β1 produced by capsules was a representative
pro-fibrosis molecule, which involved in triggering and
maintaining capsule fibrosis in an immobilized knee model.
On the contrary, MMPs could directly degrade collagen to
alleviate fibrosis by converting cells to a proteolytic
phenotype (Page-McCaw et al., 2007). Since RLX could
downregulate the TGF-β1 signaling pathway and promote the
expression of MMPs, Ko et al. (2019) found that Ad-RLX could
treat knee osteoarthritis flexion contracture, and the results
showed that after adenovirus-mediated transfer of RLX gene
into synovial fibroblasts of knee joint, RLX gene could be
expressed normally, and RLX could exerts anti-fibrotic effect
by inhibiting collagen synthesis and promoting collagen
breakdown, whereas, in addition to the increase of MMPs
and TIMPs, p-Smad2/3 expression was also increased in
RLX-treated synovial fibroblasts. We suspected that RLX
might be involved in ECM remodeling and appeared to play a
major role in collagen degradation. This study provides the basis
for RLX as an alternative therapy for early joint flexion
contractures. However, the introduction of adenoviruses into
human knee joints is ethically controversial, so it is important to
explore a new delivery method for RLX that preserves its anti-
fibrotic activity. In fact, early intervention is important to
prevent fibrosis. Using RLX at the surgical site during surgery
or making RLX an anti-fibrotic coating for surgical implants
may offer the possibility for clinical translation of RLX.

6 Challenges of RLX in fibrotic ligament
diseases

Currently, there is insufficient research on the use of RLX for the
treatment of FLDs, although many experiments in vitro and in vivo
have been conducted to demonstrate the anti-fibrosis activity of
RLX, whether RLX can be used in FLDs requires further research. To
solve the existing obstacles and challenges, some problems are worth
analyzing.

6.1 Lack of solid evidence from in vivo
studies and clinical trials

Many studies had reported that synovial cells from FLDs
tissue transfected RLX gene with adenovirus could reduce the
collagen production and attenuate fibrosis in vitro. But the
effect of RLX in FLDs is lacking solid confirmation in vivo
experiments (Kang et al., 2014; Kang et al., 2017; Ko et al., 2019;
Yun et al., 2019). Meanwhile, there was little convincing clinical
trials confirm the effectiveness and efficiencies of RLX for FLDs
(Khanna et al., 2009), partially due to the internal heterogeneity
of patients with FLDs, such as age, gender, etiology, disease
stage and comorbidity.

6.2 Pharmacokinetic issues

Fibrosis was a chronic disease requiring long-term use of RLX
(Samuel et al., 2005; Blessing et al., 2019). However, the half-life of
RLX is only 1.6 h, which limits its clinical application (Kirsch et al.,
2022). Therefore, RLX must be administered non-intravenously,
usually requiring several times a day. Given that, patients may not
adhere well to the doctor’s recommendations. While these issues can
be addressed by using microinfusion pumps to continuously deliver
peptides into the circulatory system of treated subjects, but new
routes of administration remain to be explored. For example,
allowing RLX to be digested in the gastrointestinal tract, allowing
RLX to be absorbed from the intestine, etc. In addition, topical use of
RLX as an anti-fibrotic drug can prevent drug-induced systemic side
effects to a certain extent.

In fact, not only the biological effects of RLX, but also the side
effects caused by RLX are considered an important study. We
found that during the treatment of scleroderma with RLX, some
patients experienced severe renal adverse events and decreased
creatinine clearance, (Khanna et al., 2009), possibly due to renal
vasoconstriction after RLX was stopped. So, after long-term use
of RLX, gradual discontinuation may be required. Although
animal studies indicated that RLX was not significantly toxic
to the kidney (Blessing et al., 2019; Kirsch et al., 2022), the
biological safety of RLX should be fully considered before the
clinical application.

6.3 Immunologic issues

The recombinant RLX-2 currently used in clinical trials was
derived from human RLX gene-2, which was consistent with RLX-2
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secreted by the human body. Therefore, using recombinant RLX
-2 for the treatment of FLDs somewhat lessens immune rejection.
However, circulating anti-RLX antibodies could be detected in
approximately 20% of patients with scleroderma following long-
term systemic administration of the drug (Seibold et al., 2000),
although no obvious adverse drug reactions such as allergic reactions
had been reported, the presence of circulating anti-RLX antibodies
in these patients could lead to the unpredictable partial inactivation
of the RLX, which would have a significant negative impact on their
actual efficacy.

6.4 Interfering therapies

Due to patient variations, such as the presence of comorbidity in
patients, other prior or concurrent drug treatments have to be
suspended in most clinical trials with RLX, especially, when
dealing with serious life-threatening diseases, drug interference
should be considered seriously. Recent studies had shown that
AT1R blockers, such as Sartans, which was widely used in elderly
patients who also had hypertension, could eliminate the
myofibroblast response to RLX, thereby reducing or negating its
antifibrotic effect (Chow et al., 2019). Therefore, the interference of
drugs with the reliability of clinical results is an issue to be
considered.

6.5 Development of RLX analogs and
RXFP1 agonists

The antifibrotic effect of RLX had been reported in kinds of
literatures, but numerous factors had hindered clinical
translation such as drug metabolic properties, manufacturing
difficulties and high costs (Pini et al., 2010; Hossain et al., 2016;
Blessing et al., 2019). Therefore, solving the above problems has
important implications for the clinical application of RLX.
CGEN25009, an RLX analogue, had been shown to inhibit
TGF-β1-induced collagen deposition and enhanced MMP-2
expression, and subsequently it was proved to exert
antifibrotic effects in human dermal fibroblasts. Meanwhile,
CGEN25009 had a reasonable cost/yield ratio which was a
significant pharmaceutical advantage over RLX (Pini et al.,
2010). So CGEN25009 might be a novel and potential
treatment options for FLDs. In addition to CGEN25009, B7-
33, as a single-chain peptide with a minimized structural
domain of human relaxin-2, was a functionally selective
agonist of RXFP1. In human cardiac fibroblasts and rat renal
myofibroblasts, B7-33 showed antifibrotic efficacy comparable
to that of natural relaxin-2, including stimulation of pERK1/
2 activity and MMP-2 levels in fibroblasts. Meanwhile, B7-33
attenuated fibrosis in animal models of different diseases,
including isoproterenol (ISO)-induced cardiomyopathy and
associated fibrosis mouse models, and ovalbumin (OVA)-
induced chronic allergic airway disease (AAD) mouse
models. Furthermore, in contrast to human relaxin-2, B7-33
did not promote prostate tumor growth in vivo (Hossain et al.,
2016). However, CGEN25009 and B7-33 were both
administered intraperitoneally in animals to exert antifibrotic

effects, the development and the clinical trial of RLX analogs
and RXFP1 agonists in FLDs still needed to be investigated. The
use of local delivery modalities to reduce systemic exposure to
drugs appears to be a feasible solution to consider in the
development of RLX analogs and RXFP1 agonists.

7 Conclusion

Studies conducted in the past 10 years clearly shows that
RLX is an endogenous secretory hormone, and if we control the
drug at an appropriate dose, RLX will show effective and safe
anti-fibrosis activity. At present, the research results of RLX
against fibrosis are encouraging, but the cellular and molecular
mechanism of RLX against FLDs is still unclear, and it is
expected to become an important research topic in the field
of FLDs. Although small molecule RLX analogs and
RXFP1 agonists have been shown to be effective in
alleviating fibrosis, new delivery methods warrant
consideration and require extensive clinical trials. In
conclusion, this article outlines the biological mechanism of
RLX in FLD, including the key cells, cytokines and signaling
pathways involved. At the same time, the challenges and
prospects of using RLX in FLD are analyzed. RLX may
promise to become novel treatment for FLDs, but more work
is needed.
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