121 research outputs found

    Catchment scale spatial variability of soil salt content in agricultural oasis, Northwest China

    Get PDF
    Soil salinization is a serious environmental problem in the world, especially in arid and semi-arid regions. Therefore, estimating spatial variability of soil salinity plays an important role in environmental sciences. Aiming at the problem of soil salinization inside an oasis, a case study was carried out at the Sangong River catchment in Xinjiang province, northwest China. Methods of classical statistics, geostatistics, remote sensing (RS) and geographic information system (GIS) were applied to estimate the spatial variability of soil salt content in the topsoil (0-20 cm) and its relationship with landscape structure at catchment scale. The objective of this study was to provide a scientific basis to understand the heterogeneous of spatial distribution of soil salt content at a large scale. The results revealed that (1) elevation of landform was a key factor for soil salt content's spatial variability, and soil salt content had a strong spatial autocorrelation, which was mainly induced by structural factors. (2) Mapping of soil salt content by Kriging and comparing it with landscape maps showed that area of soil salinization in old oasis was smaller than that in new oasis, and degree of soil salinization in old oasis was also lower than that in the new one. Among all landscapes, cropland was mostly affected by salinity, with 38.8% of the cropland in new oasis moderately affected by soil salinity, and 8.54% in old oasis

    Biomass allocation and yield formation of cotton under partial rootzone irrigation in arid zone

    Get PDF
    Partial rootzone irrigation (PRI) means only part of the root system is exposed to watering at one round of irrigation while the rest part is left in drying soil. The method has been proved a water-saving irrigation without much reduction in yield. This study investigated how the biomass distribution and reproductive development of cotton are affected under PRI. A three-year field irrigation experiment was conducted with a 30% reduction in irrigation amount on cotton in an arid area of Xinjiang in northwest China. Three treatments included conventional furrow irrigation (CFI) as control, alternative furrow irrigation (AFI) and fix furrow irrigation (FFI). PRI decreased stomatal conductance on the days just after irrigation when cotton plants were not under water stress, but there was no difference in stomatal conductance among irrigation treatments when plants were under water stress on the days just before next irrigation. Non-hydraulic signals from the dried rootzone inhibited the stomatal opening under well watered condition, but the moderate water deficit developed in the shoots under PRI may have played a more important role in biomass allocation and yield formation. This moderate water stress reduced shoot biomass accumulation and increased root biomass. While the vegetative and reproductive parts of the shoot were reduced in the same proportion under the PRI, the final yield was much less reduced in PRI, indicating an increased reproductive efficiency of cotton. Furthermore, PRI advanced the development of the reproductive organs and led to earlier flowering. The early matured bolls produced seed-cotton yield with a higher market value. AFI plants consistently performed better than FFI in the 3 years. We conclude that AFI can be used as a better deficit irrigation method with positive regulative effects on stomatal opening and yield forming process

    Responses to precipitation treatment for Haloxylon ammodendron growing on contrasting textured soils

    Get PDF
    The responses to precipitation of Haloxylon ammodendron (C.A. Mey.) Bunge (Chenopodiaceae), a small xerophilous tree growing on contrasting textured soils, were evaluated under no, natural, and double precipitation treatments during the entire growing season of 2006. The contrasting textured soils are sandy and heavy textured, and both are the original habitat of H. ammodendron at the south edge of Gubantonggute Desert, Central Asia. Photosynthesis, leaf water potential, transpiration, water use efficiency and leaf biomass production were monitored throughout the growing season. Root distribution of H. ammodendron was evaluated at the end of the experiment. Overall, this small tree did not show significant response to a large summer precipitation pulse or precipitation treatments, in terms of photosynthetic carbon assimilation on either soil. The leaf water potential, transpiration, and water use efficiency appeared to be highly sensitive to a large precipitation pulse and precipitation treatments in sandy soil; and leaf biomass production was also much higher for plants in sandy than that of heavy-textured soil. In sandy soil, defoliation occurred when pre-dawn leaf water potential dropped below -3.0 MPa, while in heavy-textured soil, defoliation occurred when pre-dawn leaf water potential dropped below -3.75 MPa. For similar above-ground parts, the small trees at the sandy site developed much deeper root systems and had nearly double the surface area of feeder roots compared to those at the heavy-textured site. Partially owning to the deeper and larger root system, H. ammodendron growing at coarse-textured site was in better water conditions than those at heavy-textured site under the same climatic conditions

    Profile storage of organic/inorganic carbon in soil: From forest to desert

    Get PDF
    Understanding the distribution of organic/inorganic carbon storage in soil profile is crucial for assessing regional, continental and global soil C stores and predicting the consequences of global change. However, little is known about the organic/inorganic carbon storages in deep soil layers at various landscapes. This study was conducted to determine the soil organic/inorganic carbon storage in soil profile of 0-3 m at 5 sites of natural landscape from forest to desert. Landscapes are temperate forest, temperate grassland, temperate shrub-grassland, temperate shrub desert, and temperate desert. Root mass density and carbon contents at the profile were determined for each site. The results showed that considerable decrease in root biomass and soil organic carbon content at the soil profile of 0-3 m when landscape varied from forest to desert along a precipitation gradient, while soil inorganic carbon content increased significantly along the precipitation gradient. Namely, for density of soil organic carbon: forest > grassland > shrub-grassland > shrub desert > desert; for density of soil inorganic carbon: forest, grassland < shrub-grassland < shrub desert < desert (P<0.05 in all cases). In landscapes other than forest, more than 50% soil carbon storage was found in 1-3 m depth. For grassland and shrub-grassland, the contribution from 1-3 m was mainly in the form of organic carbon, while for shrub desert and desert the contribution from this depth was mainly in the form of inorganic carbon. The comparison of soil C storage between top 0-1 m and 1-3 m showed that the using top 1 m of soil profile to estimate soil carbon storages would considerably underestimate soil carbon storage. This is especially true for organic soil carbon at grassland region, and for soil inorganic carbon at desert region. (C) 2010 Elsevier B.V. All rights reserved

    Plants water status of the shelterbelt along the Tarim Desert Highway

    Get PDF
    The plant water consumption and irrigation management are the core issue of the sustainable growing of the Tarim Desert Highway shelterbelt in the hyperaride Taklimakan Desert. The stem sap flow, water status and water consumption of shelterbelt plants were studied, then, the issue of the water save in the process of shelterbelt irrigation management was discussed by measuring the sap flow of shelterbelt plants with a stem sap flow gauge. The stem sap flow exhibited a distinct diurnal course with maximum values between 10:00 and 15:00, and minimum values between 00:00 and 03:00. Generally, sap flow was lower at night than during the day. The daily average stem sap flow of Calligonum arborescens, Tamarix ramosissima and Haloxylon ammodendron (diameter 1.9-2.0 cm) was 67.2 g.h(-1), 77.05 g.h(-1) and 61.54 g.h(-1) respectively. The sap flow was influenced by environmental factors, and the solar radiation, wind velocity, temperature and relative humidity were significantly correlative with plant stem sap flow. The annual water consumption of 8-a Calligonum arborescens, Tamarix ramosissima and Haloxylon ammodendron was 1937.80 kg, 1253.39 kg and 1026.96 kg, while daily average water consumption was 9.69 kg, 6.27 kg and 5.13 kg respectively. Under drip irrigation, soil moisture content of the shelterbelt in different months indicated no obvious fluctuation, and soil moisture was adequate. The predawn and midday plant water potential reflected that the plant water status was in good conditions. There is still some water-saving space if optimizing the present water management, integrating water resources conservation and protection performance

    Effect of Nitrate on Root Development and Nitrogen Uptake of Suaeda physophora Under NaCl Salinity

    Get PDF
    The effects of NaCl salinity and NO3- on growth, root morphology, and nitrogen uptake of a halophyte Suaeda physophora were evaluated in a factorial experiment with four concentrations of NaCl (1, 150, 300, and 450 mmol L-1) and three NO3- levels (0.05, 5, and 10 mmol L-1) in solution culture for 30 d. Addition of NO3- at 10 mmol L-1 significantly improved the shoot (P < 0.001) and root (P < 0.001) growth and the promotive effect of NO3- was more pronounced on root dry weight despite the high NaCl concentration in the culture solution, leading to a significant increase in the root:shoot ratio (P < 0.01). Lateral root length, but not primary root length, considerably increased with increasing NaCl salinity and NO3- levels (P < 0.001), implying that Na+ and NO3- in the culture solution simultaneously stimulated lateral root growth. Concentrations of Na+ in plant tissues were also significantly increased by higher NaCl treatments (P < 0.001). At 10 mmol L-1 NO3-, the concentrations of NO3- and total nitrogen and nitrate reductase activities in the roots were remarkably reduced by increasing salinity (P < 0.001), but were unaffected in the shoots. The results indicated that the fine lateral root development and effective nitrogen uptake of the shoots might contribute to high salt tolerance of S. physophora under adequate NO3- supply

    Photosynthesis responses of endemic shrubs of Taklimakan Desert to adverse temperature, humidity and radiation

    Get PDF
    Under the native habitat conditions, the seasonal gas exchange characteristics of two natural endemic plant species, Calligonum taklimakanensis B.R. Pan & GM. Shen and Tamarix taklamakanensis M.T. Liu, which are located in the hinterland of the Taklimakan Desert, are measured and compared by Li-6400 photosynthesis system. The results indicate that temperature (degrees C), solar radiation (PAR), soil water content (SWC), and other environmental factors have obvious seasonal variations and the gas exchange characteristics of two plants have different changes in different growing seasons. For C. taklimakanensis, both in July and September, its daily changes of net photosynthetic rate tend to be obvious double peak curve, but in July its peak appeared earlier. Besides its maximum net photosynthetic rate (P-max), apparent quantum efficiency (Phi), range of effective photosynthetic radiation significantly less than that in September. Moreover, its water use efficiency (WUE) in July was also lower than that in September due to the higher transpiration rate (T-r). For T. taklamakanensis, although its daily change of net photosynthetic rate is a single peak curve in September, its peak time has not changed, and except that its WUE is higher in September like C. taklimakanensis, the maximum net photosynthetic rate (P-max), apparent quantum efficiency (Phi), light saturation point, and range of effective photosynthetic radiation has not changed or slightly declined. That is to say C. taklimakanensis select a season that habitat was better (like September) to progress relative effectively photosynthesis accumulation, in contrast, T. taklamakanensis still keep a relatively stable photosynthesis rate in different growth seasons. The difference of gas exchange characteristics of the two plants in different seasons shows that adaptation strategies of the two plants to extreme conditions in desert are different. Besides, both the higher photosynthetic accumulation rate and the higher water use efficiency in September also indicate that these two endemic desert shrubs possess the abilities and strategies to make the best of limited natural resources

    Physiological response of natural C-taklimakanensis BRPan et GMShen to unconfined groundwater in the hinterland of the Taklimakan Desert

    Get PDF
    Calligonum. taklimakanensis B.R.Pan et G.M.Shen is an indigenous species that grows in the Taklimakan Desert. This study shows the relationship between C. taklimakanensis B.R.Pan et G.M.Shen and water conditions in the hinterland of the desert. The results show that: (1) Depth of water table is an important factor that affects water potential (Psi(p), Psi(A)), osmotic potential (Psi(sat), Psi(tlp)), relative water content (RWCtlp, ROWCtlp), and transpiration rate. (2) The degree of mineralization has a significant impact on the water potential of plants. A high degree of mineralization can strongly reduce plant productivity. (3) C. taklimakanensis B.R.Pan et G.M.Shen reduces the temperature of assimilation sticks through a high transpiration rate and maintains relatively high water content to adapt to drought and hot weather conditions in the hinterland of the desert. In addition, C. taklimakanensis B.R.Pan et G.M.Shen adapts to the water status in the desert through self-regulation or even sacrificing productivity

    Growth, physiological characteristics and ion distribution of NaCl stressed Alhagi sparsifolia seedlings

    Get PDF
    Alhagi sparsifolia is a leguminous perennial desert species that is plays an important role in dune stabilization and revegetation of degraded desert ecosystems. We investigated the effects of three different levels of salinity (50, 150, 250 mmol/L NaCl) on the growth, shoot photosynthetic parameters and salt distribution amongst different plant organs in one-year-old A. sparsifolia seedlings in a pot experiment over a 50 d period. The minimum (predawn) and maximum (midday) water potentials of A. sparsifolia seedlings decreased with the increase of external NaCl concentrations as a consequence of the osmotic or water deficit effect of saline solutions outside the roots. Salinity also reduced gas exchange parameters in A. sparsifolia, with seedlings subjected to salinity having lower photosynthesis rates and reduced stomatal conductances compared to the control. The reductions in photosynthetic rates in high salinity treatments of the A. sparsifolia seedlings were mainly caused by stomatal limitation. Consequently plants growing at greater external NaCl concentrations had significantly lower biomass accumulation compared to the control grown at 50 mmol/L. However, plants exposed to higher salinity were able to maintain growth throughout the experiment but allocated a greater proportion of biomass belowground. Plants exposed to higher external salinity levels had increased concentrations of Na+ and Cl- ions in shoots and roots, suggesting that A. sparsifolia seedlings were utilizing Na+ and Cl- as osmolytes to increase the cellular osmolality and decrease their water potential. We observed the greatest NaCl concentrations in the plants treated with 150 mmol/L NaCl indicating that there may be a threshold level of NaCl that can be tolerated by the plants. In conclusion our results indicate that A. sparsifolia seedlings are moderately salt tolerant. Photosynthetic gas exchange parameters were reduced by greater external salinity but the seedlings maintained substantial photosynthetic rates even under high salinity stress, were able to maintain growth over the 50 d experimental period and showed no signs of salinity toxicity or damage
    corecore