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Understanding the distribution of organic/inorganic carbon storage in soil profile is crucial for assessing
regional, continental and global soil C stores and predicting the consequences of global change. However,
little is known about the organic/inorganic carbon storages in deep soil layers at various landscapes. This
study was conducted to determine the soil organic/inorganic carbon storage in soil profile of 0–3 m at 5 sites
of natural landscape from forest to desert. Landscapes are temperate forest, temperate grassland, temperate
shrub–grassland, temperate shrub desert, and temperate desert. Root mass density and carbon contents at
the profile were determined for each site. The results showed that considerable decrease in root biomass and
soil organic carbon content at the soil profile of 0–3 m when landscape varied from forest to desert along a
precipitation gradient, while soil inorganic carbon content increased significantly along the precipitation
gradient. Namely, for density of soil organic carbon: forest>grassland>shrub–grassland>shrub desert>
desert; for density of soil inorganic carbon: forest, grassland<shrub–grassland<shrub desert<desert
(P<0.05 in all cases). In landscapes other than forest, more than 50% soil carbon storage was found in 1–3 m
depth. For grassland and shrub–grassland, the contribution from 1–3 m was mainly in the form of organic
carbon, while for shrub desert and desert the contribution from this depth was mainly in the form of
inorganic carbon. The comparison of soil C storage between top 0–1 m and 1–3 m showed that the using top
1 m of soil profile to estimate soil carbon storages would considerably underestimate soil carbon storage.
This is especially true for organic soil carbon at grassland region, and for soil inorganic carbon at desert
region.
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1. Introduction

In recent decades, the importance of the soil organic and inorganic
carbon pool in global C cycle is widely recognized (Post et al., 1982;
Trumbore, 1997; Lal, 2004; Powlson, 2005). As the largest carbon pool in
terrestrial ecosystems, soils interact strongly with microbial activity,
climate, and landscapes (Schulze and Freibauer, 2005; Shrestha and Lal,
2006;DawsonandSmith, 2007). The abundanceof organic and inorganic
C in the soil affects and is affected by climate and vegetation cover, and
organic carbon's role as a key factor of soil fertility and vegetation pro-
duction has been documented in many studies (Tiessen et al., 1994;
Houghton et al., 1999; Halvorson et al., 2002; Yoo et al., 2006). Human
activity has adversely affected global C cycles, and contributed to climate
change that will generate visible feedbacks to terrestrial ecosystems (He
et al., 2008). A clear description of soil carbon distributions and the
,

controlling factors for soil carbon loss and gainwill facilitate us to predict
the consequences of climate and land cover change (Jobbágy and
Jackson, 2000). However, most of these studies have focused on the top
meter of soil carbon storages (e.g. Feng et al.,2002; Singhet al., 2007) and
frequently disregard the soil inorganic carbon pool (Gillabel et al., 2007).
Thus,we are in urgent need of studies directlymeasuring and comparing
C storages in deep soil layers across landscape types along a precipitation
gradient, which will help in assessing current regional, continental and
global soil C stores and predicting the consequences of global change.

Globally, the estimates of soil organic carbon storages range from
1200 to 1600pg in the top 1 msoil depth. Soil inorganic carbon amounts
to 695–930pg down to the same depth (Schlesinger, 1982; Sombroek
et al., 1993; Batjes, 1996), which is mostly stored in arid and semi-arid
regions (Díaz-Hernández et al., 2003). Recent estimate of soil inorganic
carbon gives values of 940pg for the first meter (Eswaran et al., 2000).
Soil C budget in China usually is based on the database of China's second
national soil survey in 1980s, and more focused on agricultural soils at
1 m depth (Ni, 2001;Wang et al., 2001;Wu et al., 2003). So, soil carbon
storage below 1 m depth profile of China is rarely estimated at the
natural landscapes (Li et al., 2007).Howmuch carbon is underestimated
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Table 1
The basic characteristics of the five studied sites.

Site MAP
(mm)

MAT
(°C)

MAI Landscape type Elevation
(m)

Longitude Latitude

Aershan 448 −3.2 1.22 Forest 1020 120°08′3.4″ 47°21′50.1″
Erdos 350 5.3 2.17 Grassland 1258 110°11′57″ 39°29′34″
Xilinhaote 295 6.4 2.74 Shrub–grassland 1230 115°37′23″ 42°17′18″
Wuhai 170 9.0 4.05 Shrub desert 1150 106°49′54″ 39°41′24″
Denkou 102 7.8 5.62 Desert 1065 106°42′53″ 39°56′53″

Notes: Mean annual precipitation (MAP), mean annual temperature (MAT), and mean
annual aridity index (MAI).
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in global budgets below the first meter is surely a bigger questionmark.
Batjes (1996) estimates a 60% increase in the global soil organic carbon
(SOC) storage with depth extended to 2.0 m. A recent estimate of SOC
storages has reported with a 56% increase at global level when the
third meter of soil was also included (Jobbágy and Jackson, 2000). An
increasing understanding of the importance of deep soil carbon is
reflected in the mounting global estimates of soil carbon storages
(Veldkamp et al., 2003). The biomes with themost SOC at 1–3 m depth
were tropical evergreen forests and tropical grasslands/savannas
(Jobbágy and Jackson, 2000). In China, most soils are well developed
andmost soil profiles are far beyond 1 m (Li et al., 2007;Mi et al., 2008).
Soil C pool that remains poorly understood is its vertical distribution,
especially the differences of this vertical distribution across landscape
types from forest to desert.

Until now, SOC was the focus of most studies on this topic. Soil
inorganic carbon (SIC) has been recognized as a large pool, mainly
present in the form of soil carbonates in arid and semi-arid regions
(Grossman et al., 1995; Schlesinger, 2002). But its dynamic and
manageability has largely been neglected since its amount of SIC
exchange with the atmosphere was estimated at only approximately
1.0–5.0gC m−2 yr−1 in the desert soils (Schlesinger, 1997). However,
most recent study suggested that carbon absorption by saline/alkaline
soils could be as high as 62–622gC m−2 yr−1 (Xie et al., 2009). Hence,
on a global basis, SIC pool and its dynamics could be much more
important (Nieder and Benbi, 2008) than we have recognized. 47% of
the Chinese land is in arid and semi-arid area that is rich in SIC. Hence,
SIC is also very important in estimating soil carbon pool of China.

With the above-mentioned consideration, the current study
compares organic/inorganic carbon storage in natural soil profiles at
deeper depths along a precipitation gradient across landscape types in
northern China, with the objective of:

(1) quantifying both soil organic carbon and soil inorganic carbon
storage along a precipitation gradient across landscape types at
different soil depth;

(2) evaluating the relationship between SOC/SCI content and root
distribution;

(3) exploring the importance of deep soil carbon storages at 1–3 m
depth in natural soil profile from forest to desert.

2. Material and methods

2.1. Site description

The study was conducted along a precipitation gradient across
natural landscape types in the Inner Mongolia Autonomous Region
(IMAR) of northern China: temperate forest, temperate grassland;
temperate shrub–grassland, temperate shrub desert, and desert. The
temperate forest, dominated by Larix gmelini, Populus davidiana, and
Betula platyphylla, distributed mainly in the rolling hills with altitude
of 950–1300 m and annual precipitation of 408–484 mm. The temper-
ate grassland, dominated by Leymus chinensis, Stipa grandis, Agropyrum
cristatrum, and Caragana microphylla, distributed in tablelands with
altitude less than 1300 m and annual precipitation of 318–389 mm. The
temperate shrub–grassland is covered by scattered shrubs and
herbaceous plant, and is dominated by C. microphylla, Ulmus pumila,
L. chinensis, and S. grandis, with annual precipitation of 260–316 mm.
The temperate shrub desert is dominated by Tetraena mongolica, Salsola
passerine and Reaumuria soongorica, with annual precipitation of
161–209 mm. The temperate desert is low in species richness, and is
dominated by S. gobica, R. soongorica, N. sphaerocarpa and Potaninia
mongolica, with annual precipitation of 61–121 mm. Five sites were
chosen to represent the distinctive five landscapes (Table 1) along this
precipitation gradient (106°42′–120°08′ E, 39°29′–47°21′N). According
to the aridity index presented by Cheng and Zhang (1996), these sites
are in semi-humid, semi-arid, arid regions of China. The topographies of
the five sites are gently extent hills and tablelands, with elevation
ranging from1020 m in thewest to1258 m in theeast. Themeanannual
precipitation (MAP) for these sites ranges from102 to448 mm, inwhich
70–80% occurs during the growing season (May–August) in synchrony
with the peak temperature (Bai et al., 2008). Variation in latitude (and
thus radiation and temperature) iswithin a small region among the sites
(Table 1), thus precipitation can be considered as the major factor
determining the vegetation change among the sites (Zhou et al., 2002).
The soils of the study sites are chernozem soil in forest, chestnut soil in
grassland and shrub–grassland, desert soil in shrub desert land and
desert land.

2.2. Soil and plant root sampling and analysis

For each of the selected site representing a landscape type, three
sampling ditches were dug. The ditch is of 3.0 m (width)×4.0 m
(length)×3.0 m (depth). Soil bulk density was determined using a
soil corer (stainless steel cylinder of 100 cm3 in volume) and soil
samples were collected from 0.0 to 3.0 m depth (0.1 m, o.2 m, or 0.5 m
intervals; see Table 2) using steel cylinders (100 cm3). A square soil
column 0.8 by 0.8 mwas excavated layer by layer: 0–0.1, 0.1–0.2, 0.2–
0.4, 0.4–0.6, 0.6–0.8, 0.8–1.0, 1.0–1.5, 1.5–2.0, 2.0–2.5, and 2.5–3.0 m.
With a 2 mm sieved, roots were sieved from the soils from each depth,
brought back to the laboratory, where the roots were washed and
dried at 65°C to constant weight. In the laboratory, each soil sample
was thoroughly sieved to 2 mm. The sieved sample was air-dried for
the analysis of particle size constitution and chemical properties.

Soil organic carbon (SOC) was measured by the K2Cr2O7–H2SO4

oxidation method of Walkey and Black (Nelson and Sommers, 1982).
Soil inorganic carbon (SIC) was determined by a modified pressure
transducer method described by Sherrod et al. (2002). For an
individual profile with k layers, the equation of Batjes (1996) was
used to calculate the amount of organic carbon in the whole soil
profile:

SOCd = ∑
k

i=1
SOCi = ∑

k

i=1
ρi × Pi × Di × ð1−SiÞ ð1Þ

SOCi = ρi × Pi × Di × ð1−SiÞ: ð2Þ

Where k is the number of horizons, SOCi is soil organic carbon
content (Mg m−2), ρi is the bulk density (Mg m−3), Pi is the
proportion of organic carbon (gC g−1) in layer i, Di is the thickness
of this layer (m), and Si is the volume fraction of fragments >2 mm.

Similarly, soil inorganic carbonwas calculated using Eq. (3) and (4):

SICd = ∑
k

i=1
SICi = ∑

k

i=1
ρi × Pi × Di × ð1−SiÞ ð3Þ

SICi = ρi × Pi × Di × ð1−SiÞ ð4Þ

Where k is the number of horizons, SICi is soil inorganic carbon
content (Mg m−2), ρi is the bulk density (Mg m−3), Pi is the



Table 2
Soil pH and bulk density of the five studied sites.

Depth (m) Forest (448 mm MAP) Grassland (350 mm MAP) Shrub–grassland (295 mm MAP) Shrub desert (170 mm MAP) Desert (102 mm MAP)

pH(H2O)
0.0–0.1 5.7(0.1)a 7.7(0.5)b 8.5(0.1)c 8.5(0.3)c 8.7(0.2)c
0.1–0.2 6.1(0.1)a 7.8(0.4)b 8.9(0.1)c 8.9(0.1)c 8.9(0.1)c
0.2–0.4 5.9(0.1)a 7.4(0.2)b 8.8(0.3)c 8.7(0.2)c 8.9(0.2)c
0.4–0.6 6.3(0.1)a 7.7(0.4)b 8.8(0.2)c 8.9(0.1)c 9.1(0.1)c
0.6–0.8 5.8(0.1)a 7.6(0.3)b 8.8(0.2)c 9.3(0.1)d 9.1(0.2)cd
0.8–1.0 6.6(0.1)a 7.5(0.3)b 8.6(0.2)c 9.5(0.2)d 9.2(0.1)d
1.0–1.5 7.2(0.1)a 7.9(0.2)b 8.6(0.2)c 9.3(0.2)d 9.1(0.2)d
1.5–2.0 6.6(0.1)a 7.6(0.5)b 8.7(0.1)c 9.3(0.2)d 9.0(0.3)dc
2.0–2.5 6.9(0.2)a 7.5(0.1)b 8.4(0.2)c 8.9(0.1)d 8.9(0.2)d
2.5–3.0 7.4(0.1)a 7.7(0.2)b 8.5(0.1)c 8.8(0.1)d 9.4(0.1)e
0.0–3.0 6.5(0.6)a 7.6(0.2)b 8.7(0.2)c 9.0(0.3)d 9.0(0.2)d

Bulk density (Mg m−3)
0.0–0.1 0.69(0.16)a 1.14(0.02)b 1.46(0.06)b 1.52(0.03)b 1.66(0.08)c
0.1–0.2 0.74(0.06)a 1.50(0.01)b 1.50(0.04)b 1.53(0.02)b 1.60(0.02)c
0.2–0.4 0.83(0.11)a 1.51(0.02)b 1.55(0.01)b 1.54(0.03)b 1.61(0.02)c
0.4–0.6 0.86(0.05)a 1.52(0.02)b 1.52(0.03)b 1.53(0.05)b 1.54(0.04)b
0.6–0.8 0.87(0.06)a 1.50(0.03)b 1.55(0.04)b 1.53(0.02)b 1.52(0.06)b
0.8–1.0 1.33(0.10)a 1.53(0.02)b 1.56(0.03)b 1.55(0.03)b 1.50(0.06)c
1.0–1.5 1.44(0.05) a 1.54(0.02)b 1.57(0.06)b 1.55(0.04)b 1.50(0.09) a
1.5–2.0 1.48(0.06)a 1.57(0.03)b 1.57(0.03)b 1.55(0.03)b 1.50(0.04)a
2.0–2.5 1.42(0.07)a 1.56(0.03)b 1.54(0.05)b 1.56(0.04)b 1.56(0.11)b
2.5–3.0 1.41(0.10)a 1.53(0.03)b 1.57(0.03)b 1.55(0.06)b 1.53(0.03)b
0.0–3.0 1.11(0.33)a 1.49(0.13)b 1.54(0.04)b 1.54(0.01)b 1.55(0.06)b

N=3 samples per site in each landscape type; SD in parentheses; and values with the same lower case letters within rows are not significantly different at P<0.05.
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proportion of inorganic carbon (gC g−1) in layer i, Di is the thickness of
this layer (m), and Si is the volume fraction of fragments >2 mm.

2.3. Statistical analyses

All datawere analyzedusing SPSS software.Multiple comparisons and
analyses of variance (ANOVA)were used to determine the significance of
differences among sites (Sokal and Rohlf, 1995). We used linear
regression to statistically quantify the relationship between soil carbon
storage of each layer at each site and the MAP. The purpose of this linear
regression analysis was not to find the best fit line since the number of
samples is relatively low(n=5). Instead,weused linear regression to test
whether increased MAP had a positive, negative, or neutral effect on soil
carbon storages at each layer of the soil profile. In addition to the analyses
of the root biomass alreadydescribed,weused regressions to evaluate the
relationships between soil carbon storage and root distribution in soil
profile. The use of linear regression for these analyses meant to provide a
common metric to compare among sites and depths.

3. Results

3.1. Soil chemical and physical properties

With the MAP decreased from forest to desert, the pH value of the
soils increased significantly (Table 2). pH values of soils in shrub-
grassland, shrub desert and desert were significantly higher than in
forest and grassland (P<0.05). In soils of each landscape type, there
was no clear relation between soil depth and pH (Table 2). In forest
soil, the pH value ranged from 5.7 to 7.4, indicating that the soils were
weakly acidic. In grassland soil it ranged from 7.4 to 7.9, weakly
alkaline. In soils of, the shrub–grassland, shrub desert and desert, pH
value was higher than 8.4, indicating strong alkalinity. There was no
significant difference in the pH value among these three soils at depth
above 0.6 m. Below 0.6 m, the differences were significant (Table 2,
P<0.05).

The bulk density in natural soil is used as an indicator of soil strength
and/or mechanical resistance to plant growth, and can thus affect
distribution of soil carbon content (Gregorich et al., 1997; Drewry et al.,
2008). The bulk density in forest soil was low, values ranged from
0.69 Mg m−3 at the surface layer to 1.48 Mg m−3 at 1.5–2.0 m depth
and then decreased slightly after then. Vertical distribution of the bulk
density below grassland, shrub–grassland and shrub desert followed
similar trend, but the variation was much less. In desert soil, there is no
clear trend in vertical variation. Overall, bulk density was lowest in
forest, especially in the upper layer, increased with the decrease in
precipitation till the highest in desert soil (Table 2; P<0.05).

3.2. Vertical distribution of soil carbon in the profiles

As can be seen in Fig. 1, the SOC content in the 0–3.0 m soil profile
was significantly different among landscape types from forest to
desert (P<0.05). On average, the order of decrease is in accordance
with the MAP of each landscape: forest (15.04 g kg−1)>grassland
(1.33 g kg−1)>shrub–grassland (0.92 g kg−1) > shrub land desert
(0.42 g kg−1)>desert (0.25 g kg−1). There are also significant differ-
ences in vertical distribution of SOC: with high concentration in upper
layer for the forest, to the nearly even distribution in the profile of
desert soil. Statistically speaking (Fig. 1, P<0.05), the SOC content of
each individual layer was significant among forest, grassland (both
grassland and shrub–grassland in the current classification of land-
scapes), and desert (both shrub desert and desert in the current
classification of landscapes). Namely, the SOC differences among
landscape types (and thus along precipitation gradient) not only
presented in the whole profile (Fig. 1), but also presented significantly
in profile distribution and even among each individual layer.

SIC content in the soil profiles of the five landscape types were
shown in Fig. 2. It can be seen that the SIC content is also remarkably
different along the precipitation gradient from forest to desert
(P<0.05), but with a trend opposite to SOC: on average over the whole
profile, forest (0.16 g kg−1)<grassland (0.25 g kg−1)<shrub–grassland
(0.57 g kg−1) < shrub desert (1.86 g kg−1)<desert (2.89 g kg−1). The
profile distribution of SICwasmuchmore diverse than that of SOC (Figs. 1
and 2): with the highest content appeared at the upper layer, middle of
the profile, or both. SIC content in forest and grasslandwere smaller than
0.5 g kg−1 in the layer with highest content of the profile, but in shrub
desert and desert, it was higher than 1 g kg−1 in the layer with lowest



Fig. 1. The vertical distribution of SOC content in the soil profile of different landscapes (the different lower case letters within the same depth of different landscapes indicating
significantly different at P<0.05).
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content in the profile. Due to diversity of profile distribution of SIC, the
significance of difference among landscapes was not the same for
individual layer: above 1 m, forest and grassland were not statistically
different, the others were; at 1–3 m depth, forest, grassland and shrub–
grassland were not statistically different, the others were (P<0.05).

The relationship between soil organic/inorganic carbon contents at
each layer and MAP was analyzed by linear regression to test whether
increasedMAP had a positive, negative, or neutral effect on soil carbon
storages at each layer of soil profiles. SOC content at each layer of the
soil profiles positively correlated with MAP, with R2 increased re-
Fig. 2. The vertical distribution of SIC content in the soil profile of different landscapes (th
significantly different at P<0.05).
markably with depth (Table 3). Generally speaking, for layers above
1 m, the correlation between SOC content and MAP was not signifi-
cant at P=0.05, but for layers of 1–3 m, the correlation was signifi-
cant. The relationship between SIC content and MAP was negative at
each layer of soil profiles, and for most of the layers the correlation
was significant at P=0.05, regardless the depth (Table 3). Namely, on
layer basis SIC seems better correlated with MAP than SOC, which is
surprising as common sense tells that SOC should be better correlated
with MAP (via vegetation). Higher spatial variation and higher dy-
namics of SOC might be part of the reason.
e different lower case letters within the same depth of different landscapes indicating



Table 3
Relationships between SOC/SIC content at each layer and the MAP for the five sites.

SOC SIC

Depth (m) Regression line equations R2 P-value Regression line equations R2 P-value

0.0–0.1 YSOC=0.0754 (MAP)−13.07 0.549 0.152 YSIC=−0.0087 (MAP)+3.62 0.785 0.046
0.1–0.2 YSOC=0.0698 (MAP)−12.17 0.541 0.157 YSIC=−0.01 (MAP)+4.12 0.813 0.036
0.2–0.4 YSOC=0.0608 (MAP)−10.63 0.529 0.164 YSIC=−0.0102 (MAP)+4.21 0.808 0.038
0.4–0.6 YSOC=0.0571 (MAP)−9.98 0.539 0.158 YSIC=−0.0092 (MAP)+3.77 0.894 0.015
0.6–0.8 YSOC=0.052 (MAP)−9.15 0.537 0.159 YSIC=−0.0083 (MAP)+3.44 0.885 0.017
0.8–1.0 YSOC=0.028 (MAP)−4.73 0.571 0.140 YSIC=−0.0109 (MAP)+4.42 0.871 0.021
1.0–1.5 YSOC=0.005 (MAP)−0.58 0.812 0.037 YSIC=−0.0077 (MAP)+3.21 0.898 0.014
1.5–2.0 YSOC=0.003 (MAP)−0.09 0.981 0.001 YSIC=−0.0046 (MAP)+2.01 0.658 0.096
2.0–2.5 YSOC=0.003 (MAP)−0.14 0.973 0.002 YSIC=−0.0055 (MAP)+2.31 0.723 0.068
2.5–3.0 YSOC=0.003 (MAP)−0.20 0.955 0.004 YSIC=−0.0065 (MAP)+2.59 0.819 0.034
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3.3. The importance of carbon storage at 1–3 m depth

Fig. 3 shows soil organic and inorganic carbon storages under
different landscape types in layers of 0–1 m and 1–3 m. It can be seen
that (Fig. 3A) there was large and significant SOC storage below 1 m
depth, especially for both grassland and shrub–grass land. There were
also large and significant SIC storage at 1–3 m depth in general,
especially for shrub desert and desert landscapes (Fig. 3B). To make
the proportion at these two depths clear, Fig. 4 gives the percentage of
carbon storage at 0–1 m and 1–3 m depths. In landscapes other than
forest, overall carbon storage (SOC+SIC) at 1–3 m depth accounted
for more than 50% of that for the 0–3 m soil profile (Fig. 4A). For both
grassland and shrub–grassland, contribution from 1–3 m mainly in
the form of SOC; for both shrub desert and desert, contribution from
1–3 m mainly in the form of SIC. Only for the landscape of forest, the
contribution from 1–3 m layer is less than 50% (20% approximately),
which is mainly in the form of SOC.

3.4. Root biomass density and its relationship with soil carbon content

Root biomass density at each layer was given in Table 4 for the five
landscapes. There were large variations in root biomass density among
landscapes (Table 4). For the same layer, the decrease from forest to
desert could be two orders of magnitude (Table 4). Due to large spatial
variation in root distribution and low replication in our sampling,
standard deviation were high for most of the data (Table 4). As a result,
Fig. 3. Soil carbon (SOC/SIC) storage at different depths for the five landscapes.
statistical test often told that there was no significant difference among
some landscapes, although the mean values were rather different
(Table 4). The vertical distributions of root biomasswere similar among
landscapes, with more than 65% of root biomass stocked in 0–60 cm
depth. For forest soil and shrub–grassland, this was more than 90%.

In Fig. 5, the root biomass density for each layer from each landscape
wasplotted against correspondingSOCandSICof that layer. As expected,
there was a strong, positive correlation between root biomass density
and SOC (Fig. 5, P<0.001). The relationship between root biomass
density and SIC was exponentially negative (Fig. 5, P<0.001), which
means that across a precipitation gradient, high precipitation resulted in
leaching out of SIC from soils.
4. Discussions

On a precipitation gradient combined with gradient variation in
landscapes, SOC and SIC varied in an opposite trend, with the former
increase with precipitation and the latter decrease with precipitation
(Figs. 1 and 2). The gradient variation in SOC was mainly determined
Fig. 4. Percentage of soil carbon at different depths for the five landscapes. Shown in A
to C are percentages to SOC+SIC.



Table 4
Root biomass density (g m−3) at different soil layers under different landscape types.

Depth (m) Forest (448 mm MAP) Grassland (350 mm MAP) Shrub–grassland (295 mm MAP) Shrub desert (170 mm MAP) Desert (102 mm MAP)

0.0–0.1 2765(1366)a 260(109)b 333(263)b 127(34)b 20(5)b
0.1–0.2 2033(114)a 650(141)b 327(138)c 131(98)d 82(51)d
0.2–0.4 1164(750)a 186(62)b 355(267)b 72(36)b 31(7)b
0.4–0.6 527(63)a 65(19)b 460(152)a 86(14)b 52(43)b
0.6–0.8 327(196)a 43(22)b 408(11)a 34(23)b 25(13)b
0.8–1.0 335(191)a 36(11)b 409(152)a 20(15)b 18(7)b
1.0–2.0 56(21)a 14(5)a 382(253)b 0 2.5(2)a
2.0–3.0 5(2)a 0 0 0 0
0.0–3.0 2421(645)a 423(77)bc 1019(391)b 185(35)c 77(20)c

Values are means±SD. Values with the same lower case letters within rows are not significantly different at P<0.05.
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by the biological activities of vegetation, which concentrated at upper
layer (Fig. 1, Charley and West 1977; Schlesinger and Adrienne,
1998); while SIC was determined by leaching, which created a
complicated profile distribution (Fig. 2, Schlesinger and Adrienne,
1998; Nordt et al., 2000; Díaz-hernández and Fernández, 2008). The
character of vertical distribution in SOC and SIC in the 0–3 m profile
further proved this: SOC was always higher at upper layers (Fig. 1),
and SIC was not necessarily following the same trend (See Fig. 2,
shrub–grassland vs. shrub desert). Lack of data on soil C distribution in
the profile at different landscapes has been identified as one of the
major knowledge gaps in soil science (Lal et al., 1998). Our results
partially filled this gap and should help to improve global predictions
of soil carbon storage.

Most previous studies on soil carbon storage have been focused on
upper layer, especially the top 1.0 m, although deeper profile was
known to be important in soil carbon storage (Nepstad et al., 1994;
Batjes, 1996; Jobbágy and Jackson, 2000; Veldkamp et al., 2003; Mi
et al., 2008). Our study indicated that there is large soil carbon storage
below 1.0 m, whether it is mainly SOC in grassland landscapes or
mainly SIC in desert landscapes (Fig. 3). Namely, in landscapes other
than forest, more than 50% soil carbon storage was in 1–3 m depth
(Fig. 4). Jobbágy and Jackson (2000) estimated SOC storage at 1–3 m
to full soil profile was about 39% in temperate grassland, 39% in
scerophyllous shrub land, and 46% in desert. These values were
smaller than the values we measured (Fig. 4, 63% in grassland, 52% in
shrub–grassland, and 50% in desert). Li et al. (2007) gave 45% soil
carbon storage at 1–3 m to full soil profile in Chernozems and 61% in
desert soil, which were higher than our values (about 20% in forest
Chernozems and about 50% in desert soil). The discrepancy of these
data set suggested that further direct measurement like ours are
desired. In addition, our data showed that SIC could be as important as
SOC storage at continental scale, especially nowwhenmore and more
Fig. 5. Relationship between soil organic/inorganic carbon content and root biomass
density.
evidence showed that SIC might be as dynamic as SOC (Jordan et al.,
1999; Stone, 2008; Wohlfahrt et al., 2008; Xie et al., 2009).

The spatial variation of root biomass density was obvious across
landscapes and depths (Table 4), and the linear relationship between
root density and SOC was also significant (Fig. 5). However, Fig. 5 also
shows that this linear relationship is not tight (namely, data are
scattered). Looking further into Table 4, one can found that, in
grassland and shrub–grassland, for instance, most of the roots were
distributed in the upper 1.0 m (Table 4), but around half of the SOC
has been stored at 1–3 m (Fig. 4). This may be easily explained by
downward migrating of organic carbon in the soil profile by leaching
(Dosskey and Bertsch, 1997) and microbial activities. Namely, profile
distribution of SOC was not only determined by root distribution
(Schenk and Jackson, 2002), which was in itself a character deter-
mined by vegetation/landscape type (Jackson et al., 2000; Jobbágy and
Jackson, 2000), but also by precipitation, which was the driving force
of leaching. Hence, the effect of precipitation on SOC is two folded: on
one hand, precipitation shapes vegetation/landscape types that in
turn determined the root distribution; on the other hand, it directly
shapes the profile distribution of SOC by leaching. In fact, this two-fold
effect was also true to SIC: Plant and microbial activity could sig-
nificantly improve water infiltration that would in turn favor the SIC
leaching and precipitation of secondary carbonate (Lal, 2004). Of
course, very high precipitation combined with strong biological
activity could lead to bicarbonate leaching out almost completely.
These explain the exponentially negative relationship between root
biomass density and SIC.
5. Concluding remarks

The direct comparison of soil C storage between top 0–1 m and
1–3 m showed that the using top 1 m soil profile to estimate soil carbon
storages would considerably underestimate soil carbon storage. This is
especially true for SOC at temperate grassland and shrub–grassland, for
SIC of temperate shrub desert and desert. This kind of underestimation
is the least in temperate forest. Namely, the depth distribution is
landscape/vegetation specific. This kind of information is crucial when
effort is made to assess current regional, continental and global soil C
storage and to optimize strategies of mitigating the accumulation of CO2

in the atmosphere.
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