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ABSTRACT
The effects of NaCl salinity and NO−

3 on growth, root morphology, and nitrogen uptake of a halophyte Suaeda

physophora were evaluated in a factorial experiment with four concentrations of NaCl (1, 150, 300, and 450 mmol L−1)

and three NO−
3 levels (0.05, 5, and 10 mmol L−1) in solution culture for 30 d. Addition of NO−

3 at 10 mmol L−1

significantly improved the shoot (P < 0.001) and root (P < 0.001) growth and the promotive effect of NO−
3 was more

pronounced on root dry weight despite the high NaCl concentration in the culture solution, leading to a significant increase

in the root:shoot ratio (P < 0.01). Lateral root length, but not primary root length, considerably increased with increasing

NaCl salinity and NO−
3 levels (P < 0.001), implying that Na+ and NO−

3 in the culture solution simultaneously stimulated

lateral root growth. Concentrations of Na+ in plant tissues were also significantly increased by higher NaCl treatments

(P < 0.001). At 10 mmol L−1 NO−
3 , the concentrations of NO−

3 and total nitrogen and nitrate reductase activities in the

roots were remarkably reduced by increasing salinity (P < 0.001), but were unaffected in the shoots. The results indicated

that the fine lateral root development and effective nitrogen uptake of the shoots might contribute to high salt tolerance

of S. physophora under adequate NO−
3 supply.
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It is estimated that 1.5 billion ha of land are salt-affected, and soil salinization is a worldwide
problem for agricultural and ecosystem conservation (Aiazzi et al., 2002). Saline soils contain extreme
ratios of Na+:Ca2+, Na+:K+, and Cl−:NO−

3 , which causes reduced plant growth due to specific ion
toxicities and ionic imbalance acting on biophysical or metabolic components of plant growth (Gratten
and Grieve, 1999). The topic of salinity-mineral nutrition relations in halophytes has received less
attention than that of glycophytes. Nevertheless, some halophytes, despite their remarkable ability to
absorb nutrients selectively from solutions dominated by Na+ and Cl−, may also exhibit symptoms of
mineral imbalance and disorders (Gratten and Grieve, 1999). Waisel (1985) proposed that the effect
of salinity on the growth of halophytes depends on the general water relations of the plants and their
nitrogen nutrition. Several studies have demonstrated that application of nitrogen fertilizers stimulated
growth of halophytes (Naidoo, 1987; Song et al., 2006). However, the mechanism by which this effect is
brought about is not clear (Naidoo, 1987).

For glycophytes, Lacan and Durand (1995) suggested that the primary processes of plant salt to-
lerance may reside in the roots. There is strong theoretical evidence that roots, in conjunction with
the environmental parameters of the shoots, control the salt load to the shoots and consequently are
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directly involved in the whole-plant responses to saline environments (Maggio et al., 2001). Root growth
is usually less sensitive to salt stress than shoot growth; therefore, an increased root:shoot ratio is often
observed when plants are subjected to saline conditions (Cheeseman, 1988). Salinity-induced changes in
the morphology of the root system may have consequences for nutrient uptake (Bernstein and Kafkafi,
2002). However, root growth of halophytes may be affected differently to that of glycophytes.

Past research has focused mainly on processes in shoots, such as compatible osmolyte accumulation
(Colmer et al., 1996; Naidoo and Naidoo, 2001), activity of antioxidant enzymes (Misra and Gupta,
2006), and photosynthesis (Kao et al., 2001) under different salinity and nitrogen treatments. Nitrate is
not only a nutrient, but can also be a signaling molecule for plant growth (Crawford, 1995; Zhang et al.,
1999). Our previous research has confirmed that adequate nitrate supply significantly improves growth
of Suaeda physophora. This halophyte is widely grown by farmers in Xinjiang, China, because it is a
host to parasitic plants, Cistanche spp., which is a valuable plant in traditional Chinese medicine (Song
et al., 2006). Changes in root system and nitrogen nutrition partitioning between aerial and below-
ground parts of halophytes in response to nitrogen fertilization under high salinity have been much less
extensively studied (Naidoo, 1987; Liu et al., 2004) than other aspects of halophyte physiology (Flowers
and Colmer, 2008). This study aimed to evaluate the interactive effects of nitrate and salinity on root
growth and nitrogen uptake of S. physophora.

MATERIALS AND METHODS

Seeds of Suaeda physophora Pall. were collected from the natural saline habitats of Xinjiang, China,
in October 2006. They were germinated on vermiculite in a controlled environment chamber (Conviron-
PGR15, Controlled Environment Ltd.,Winnipeg, Canada) with a 12/12 h light/dark cycle at a light
intensity (photosynthetically active radiation, PAR) of 480 μmol m−2 s−1. The temperature was 30 ◦C
during the day and 20 ◦C at night and relative humidity was 60%. After 7 d, 12 uniform seedlings were
transferred to each 2-L plastic pots filled with a 1 mmol L−1 NO−

3 nutrient solution. The NO−
3 nutrient

solution contained 0.5 mmol L−1 Ca(NO3)2, 2.5 mmol L−1 CaCl2, 1 mmol L−1 K2SO4, 2 mmol L−1

MgSO4, 1 mmol L−1 KH2PO4, 90 μmol L−1 Fe-ethylene diamine tetraacetic acid (EDTA), 46 μmol L−1

H3BO3, 9.1 μmol L−1 MnCl2, 0.32 μmol L−1 CuSO4, 0.76 μmol L−1 ZnSO4, 0.56 μmol L−1 Na2MoO4,
and 1 mmol L−1 NaCl. The pH of the nutrient solution was adjusted to 6.5 ± 0.1 with KOH and H2SO4.
The nutrient solution was continuously aerated and replaced every two days during pre-culture for 30
d before treatment.

The pre-cultured plants were subjected to 1, 150, 300, and 450 mmol L−1 NaCl. At each salinity
level, plants were supplied with 0.05, 5, and 10 mmol L−1 NO−

3 . The 0.05 mmol L−1 NO−
3 nutrient

solution contained 0.025 mmol L−1 Ca(NO3)2, 2.975 mmol L−1 CaCl2, 2 mmol L−1 K2SO4, 2 mmol
L−1 MgSO4, and 1 mmol L−1 KH2PO4; the 5 mmol L−1 NO−

3 nutrient solution contained 2.5 mmol L−1

Ca(NO3)2, 0.5 mmol L−1 CaCl2, 2 mmol L−1 K2SO4, 2 mmol L−1 MgSO4, and 1 mmol L−1 KH2PO4;
and the 10 mmol L−1 NO−

3 nutrient solution contained 3 mmol L−1 Ca(NO3)2, 4 mmol L−1 KNO3, 2
mmol L−1 MgSO4, and 1 mmol L−1 KH2PO4. All the solutions contained the same amounts of iron
and other micronutrients as the pre-culture nutrient solution. The pH of the solutions was adjusted to
6.5 ± 0.1 with KOH and H2SO4. Salinity treatments were introduced gradually from initially 1 to 75
mmol L−1 NaCl on day 2 and then at increments of 75 mmol L−1 NaCl every 2 d to reduce osmotic
shock. Each treatment was replicated three times.

Thirty days after the final salinity concentrations were reached, the plants were removed from the
treatment solutions, their roots and shoots were separated, and the fresh weights were determined. Part
of the plant tissues were dried for 72 h at 80 ◦C for determination of dry weights. The rest fresh plant
samples were frozen in liquid nitrogen. After washed with distilled water three times, the roots were
placed in a 10 g L−1 crystal violet solution at 50 ◦C for 5 min. An abundant volume of dye solution
was used and refreshed for staining of each sample. Stained roots were gently rinsed for at least 3 min
under running water, carefully spread in a thin layer of water on a transparent tray, and scanned with
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an Epson Perfection Photo scanner 1650 (Epson America Inc., USA). The images scanned were saved
for analysis of total root length using Rootedge 2.3b software (Himmelbauer et al., 2004).

The length of the primary roots was measured with a ruler to the closest 1 mm. Lateral root length
was the difference between total root length and primary root length, and the ratio of the primary root
length to the total root length was calculated. All lateral roots including first- and second-order lateral
roots that were 5 mm long were counted. Mean length of lateral roots was calculated by dividing total
root length by total number of lateral roots.

The frozen plant samples were extracted in boiling distilled water and the extract was filtered. NO−
3

in the filtered extract was determined by a colorimetric method with a UV-120-02 spectrophotometer
(Shimadzu, Kyoto, Japan), and Cl− by titration with 0.03 mmol L−1 AgNO3, with 50 g L−1 K2CrO4 as
an indicator. After being ground through a 1-mm screen, the dry plant samples (0.5 g each) were digested
in a mixture of nitric, perchloric, and hydrochloric acids (3:2:1) in a Gerhardt digestion block. Na+ in
the digested solution was analyzed by atomic absorption spectrophotometry (Thermo Solaar M, Thermo
Electron, USA), and total nitrogen was determined by Kjeldahl method.

Nitrate reductase (NR) activity was measured according to Plaut (1974), with minor modifica-
tions. Approximately 0.5 g frozen sample was homogenated in 4 mL of 0.1 mol L−1 K-phosphate buffer
(pH 7.5) containing 1 mmol L−1 EDTA and 1 mmol L−1 cysteine. The homogenate was centrifuged for
10 min at 15 000 × g, and the supernatant was used for enzyme assay in a mixture containing 30 μmol
L−1 K-phosphate buffer (pH 7.5), 0.5 μmol L−1 nicotinamide adenine dinucleotide (NADH), 20 μmol
L−1 KNO3, and 0.1 mL of the supernatant. The mixture was incubated at 30 ◦C for 15 min and the
reaction was terminated by adding consecutively 1 mL of 10 g L−1 sulphanilamide dissolved in 2 mol
L−1 HCl and 1 mL of 0.2 g L−1 N -(1-naphthyl)-ethylenediamine. Absorbance was read at 540 nm after
15–20 min.

Statistical analysis was performed with SAS software (version 6.12, SAS Institute Inc., Cary, USA).
All data were subject to a two-way analysis of variance (ANOVA) and the means were separated by
least significant difference (LSD) test at the 5% level.

RESULTS

Effects of salinity and NO−
3 on plant growth

The shoot and root dry weights progressively increased with both increasing salinity and NO−
3 levels

(Fig. 1, Table I). Increasing NaCl levels from 1 to 300 mmol L−1 markedly increased shoot and root
growth, but no further significant increase occurred at 450 mmol L−1 NaCl (Fig. 1a and b). The seedlings
treated with 450 mmol L−1 NaCl and 0.05 mmol L−1 NO−

3 died at the end of the experiment. Shoot
growth was unaffected by increasing NO−

3 levels from 0.05 to 5 mmol L−1, but it significantly increased
with further increasing NO−

3 levels up to 10 mmol L−1 (Fig. 1a). However, root growth progressively
increased as NO−

3 was increased from 0.05 to 10 mmol L−1 (Fig. 1b).
Increasing salinity led to a significant decrease in root:shoot ratio at various NO−

3 levels because
there was a significantly greater allocation of resources to the shoots (Table I, Fig. 1c). Conversely, an
increase in NO−

3 caused a significant increase in root:shoot ratio except at 1 mmol L−1 NaCl because
more resources were allocated to the roots. Interactive effects of salinity and NO−

3 on the root dry weight
and the root:shoot ratio were significant (Table I).

Effects of salinity and NO−
3 on root morphology

Salinity and NO−
3 had significant effects on the lateral root length, number of lateral roots, and

the mean length of lateral roots (Table I, Fig. 2). Lateral root length was significantly higher at 300
mmol L−1 NaCl with 5 and 10 mmol L−1 NO−

3 . However, the length of lateral roots was substantially
reduced at 300 mmol L−1 NaCl and 0.05 mmol L−1 NO−

3 . There was a significant increase in lateral
root length as NO−

3 increased, especially at 10 mmol L−1 NO−
3 (Fig. 2b). A similar trend was found for
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Fig. 1 Shoot dry weights (a), root dry weights (b), and root:shoot ratios (c) of Suaeda physophora in response to 1, 150,

300, and 450 mmol L−1 NaCl and 0.05, 5, and 10 mmol L−1 NO−
3 treatments for 30 d. Vertical bars represent standard

errors (n = 3).

TABLE I

Results (F values) of two-way analysis of variance for biomass production and allocation and root morphology of Suaeda

physophora with NaCl and NO−
3 treatments for 30 d (n = 3)

Parameter NO−
3 Salinity NO−

3 × salinity

Shoot dry weight 54.25*** 48.50*** 1.76

Root dry weight 99.03*** 27.38*** 3.71*

Root:shoot ratio 7.49** 16.54*** 2.98*

Primary root length 3.15 0.34 1.60

Lateral root length 137.58*** 54.17*** 1.90

Number of lateral roots 14.19*** 24.25*** 0.00

Mean length of lateral roots 66.80*** 8.71** 0.45

*, **, ***Significant at P < 0.05, P < 0.01, and P < 0.001, respectively.

Fig. 2 Primary root length (a), total lateral root length (b), number of lateral roots (c), and mean length of lateral

roots (d) of Suaeda physophora in response to 1, 150, 300, and 450 mmol L−1 NaCl and 0.05, 5, and 10 mmol L−1 NO−
3

treatments for 30 d. Vertical bars represent standard errors (n = 3).
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the mean length of lateral roots (Fig. 2d). Number of lateral roots for plants at 0.05 and 5 mmol L−1

NO−
3 increased with increasing NaCl levels up to 150 mmol L−1, but then did not increase further at

higher NaCl concentrations. Number of lateral roots at 10 mmol L−1 NO−
3 increased with increasing

NaCl level up to 300 mmol L−1 (Fig. 2c). Salinity, NO−
3 , and their interaction had no significant effect

on the primary root length (Table I, Fig. 2a). The primary root represented about 1.4%–11.8% of the
total root length.

The effects of salinity and NO−
3 on root distribution were shown in Fig. 3. The depth of the root

distribution increased with increasing NO−
3 levels, and the root system in the range of 4–12 cm was

larger at 10 mmol L−1 NO−
3 . The response of the root distribution to salinity was inconsistent. At 0.05

mmol L−1 NO−
3 , the deepest root distribution was observed at 150 mmol L−1 NaCl. However, when

NO−
3 was increased up to 10 mmol L−1, the deepest roots occurred at 300 mmol L−1 NaCl.

Fig. 3 Total root lengths of Suaeda physophora at different depths of the culture solutions in response to 1, 150, 300, and

450 mmol L−1 NaCl and 0.05, 5, and 10 mmol L−1 NO−
3 treatments for 30 d.

Effects of salinity and NO−
3 on tissue NO−

3 and total nitrogen and NR

The concentrations of NO−
3 and total nitrogen and the NR activities in both roots and shoots except

the shoots at 10 mmol L−1 NO−
3 significantly decreased with increasing salinity and decreasing NO−

3

supply. Decreased activities of NR with increasing salinity under lower NO−
3 levels were accompanied

by decreased tissue concentrations of NO−
3 and total nitrogen (Table II, Fig. 4). At each salinity level,

the concentrations of NO−
3 and total nitrogen and the NR activities in the shoots and roots were the

greatest at 10 mmol L−1 NO−
3 . Salinity and NO−

3 interaction effects were significant on the nitrogen
concentration and NR activity in both shoots and roots (Table II).

TABLE II

Results (F values) of two-way analysis of variance for NO−
3 , Na+, Cl−, and total nitrogen concentrations and nitrate

reductase activity in the shoots and roots of Suaeda physophora with NaCl and NO−
3 treatments for 30 d (n = 3)

Parameter NO−
3 Salinity NO−

3 × salinity

Shoot Root Shoot Root Shoot Root

NO−
3 440.33*** 59.19*** 16.62** 19.75*** 9.69*** 4.74**

Total nitrogen 72.57*** 78.62*** 11.11*** 45.58*** 10.06*** 13.31***

Nitrate reductase activity 25.31*** 69.11*** 12.30*** 64.76*** 8.30*** 8.41***

Na+ 47.95*** 14.36*** 183.78*** 145.64*** 0.00 0.00

Cl− 141.97*** 4.44∗ 159.14*** 159.78*** 26.62*** 6.67***

*, **, ***Significant at P < 0.05, P < 0.01, and P < 0.001, respectively.

Effects of salinity and NO−
3 on tissue concentrations of Na+ and Cl−

Increasing salinity led to significant increases in both Na+ and Cl− concentrations in the plants
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Fig. 4 Concentrations of NO−
3 (a and b), total nitrogen (c and d) and NO−

3 reductase (NR) activities (e and f) in the

shoots and roots of Suaeda physophora in response to 1, 150, 300, and 450 mmol L−1 NaCl and 0.05, 5, and 10 mmol L−1

NO−
3 treatments for 30 d. Vertical bars represent standard errors (n = 3). DW = dry weight; FW = fresh weight.

(Table II, Fig. 5). The concentration of Na+ in the shoots increased with increasing NO−
3 supply (Table

II, Fig. 5a). However, Cl− concentrations in both roots and shoot were reduced at 5 and 10 mmol L−1

NO−
3 (Table II, Fig. 5c and d). Interactive effects of salinity and NO−

3 on the Cl− concentrations in the
plants were significant (Table II).

Fig. 5 Concentrations of Na+ and Cl− in the shoots (a and c) and roots (b and d) of Suaeda physophora in response to

1, 150, 300, and 450 mmol L−1 NaCl and 0.05, 5, and 10 mmol L−1 NO−
3 treatments for 30 d. Vertical bars represent

standard errors (n = 3). DW = dry weight.

DISCUSSION

Shoot and root growth

This study revealed the importance of salinity and NO−
3 and their interaction to growth, root mor-
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phology, and nitrogen uptake of S. physophora. There was a positive shoot growth response to NO−
3

added at 10 mmol L−1 under high NaCl salinity (P < 0.001) and lower concentrations of NO−
3 had no

effect on the shoot growth over a range of external NaCl levels, indicating that S. physophora had a
high demand for NO−

3 for its shoot growth. This is consistent with the findings of Naidoo (1987), who
found that Avicennia marina growth at high salinity significantly increased at 14 mg N L−1 but not at
0.14 and 1.4 mg N L−1 (NH4Cl).

A similar trend of enhanced growth was found for roots in response to NO−
3 supply under NaCl

salinity (Fig. 1b). Similarly, Frechilla et al. (2001) found that pea maintained a better root growth
under salinity in NO−

3 -fed plants. Moreover, root growth of S. physophora was more sensitive to NO−
3

addition than shoot growth, which resulted in an increase in the root:shoot ratio (Fig. 1c). These results
contrasted with the classical responses to nitrogen supply of most non-halophytes, for which high ni-
trogen typically reduces root growth relative to shoot growth, and leads to a decrease in the root:shoot
ratio (Gleeson, 1993; Coleman et al., 2004). In this study, growth of S. physophora was significantly
stimulated by NO−

3 (Fig. 1) (P < 0.001). However, nitrogen deficiency in plants with only 0.05 mmol L−1

NO−
3 at 450 mmol L−1 NaCl appeared to lead to the death of all seedlings. Therefore, adequate NO−

3

application substantially increased the growth of S. physophora under saline conditions, presumably
because NO−

3 was a severe growth-limiting factor compared with salinity. The growth pattern of higher
plants manifests an economic principle which is illustrated by the partitioning of photosynthetically pro-
duced biomass between roots and shoots in order to achieve optimal utilization of all available resources
(Bloom et al., 1985; Van der Werf et al., 1993). The increase in root:shoot ratio of S. physophora under
high salinity with adequate NO−

3 supply had the potential to increase the ability of the roots to supply
nutrients and water, and hence might present an adaptive advantage.

Root morphological features

Lateral root growth was enhanced by increasing NaCl salinity (Fig. 2b) (P < 0.001). The increased
root proliferation was the result of increased numbers of lateral roots and a significant stimulation
of the elongation rate of lateral roots. This is in contrast with the findings of Rubinigg et al. (2004)
which showed that the lateral root length of Plantago maritima was considerably reduced at 200 mmol
L−1 NaCl, and the decrease was a consequence of the inhibition of the lateral root primordia rather
than a reduced length. These showed that different halophytes varied in their responses of lateral root
development under high salinity. The presence of NaCl in the nutrient solution may have affected the
induction or activation of the apical meristem of lateral roots (Rubinigg et al., 2004). Moreover, the
contribution of Na+ in the solutions to lateral root growth was much higher than that of Cl− because
the concentration of Na+ in the shoots significantly increased with NO−

3 addition, while the opposite
was true for that of Cl− (Fig. 5). Species in the genus Suaeda are salt-accumulating plants; substantial
Na+ concentrations are found in their shoots (Yeo and Flowers, 1980; Wang et al., 2002). Halophyte
growth rate appears to be obligately coupled to supply of Na+ (Yeo and Flowers, 1986). For roots of the
non-halophyte cotton, the highest Na+ concentration was found in the region of the highest localized
growth rate (Zhong and Läuchli, 1994). This may suggest that Na+ accumulation was not the main
cause of cotton root growth reduction under NaCl stress. Further studies were required to study the
mechanism by which Na+ regulated lateral root development in halophytes.

In our culture conditions, high external NO−
3 concentration positively affected lateral root branching

and growth (Fig. 3b) (P < 0.001). It is well known that local NO−
3 favors branching of root systems

(Drew and Saker, 1975; Linkohr et al., 2002). Such a stimulation of lateral root elongation in Arabidopsis
appears to be attributable to a signaling effect from NO−

3 itself, rather than to a downstream metabolite
(Zhang and Forde, 1998). In contrast, deficiency of nitrogen led to a remarkable decrease in the length of
both first- and second-order lateral roots (Drew and Saker, 1975). In the present study, it appeared that
NO−

3 and Na+ produced a similar effect on the lateral roots, but with the promotive effect of NO−
3 on

lateral root length being more pronounced than that of salinity (Table I). On the other hand, nutrient
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uptake ability of plants not only depends on root length growth but also on vertical root exploration
(Voisin et al., 2002). The depth of the root system of S. physophora was highest and the extension of
the roots was largest at 10 mmol L−1 NO−

3 irrespective of the salinity level (Fig. 3). An extensive root
system enhances the ability of plants to absorb both water and nutrients.

There were no significant differences in primary root length at any salinity and NO−
3 levels. The

fact that the primary roots represented only about 1.4%–11.8% of the total root length suggested that
this part of root system played a minor role in nitrogen and water uptake under salinity. This is in
agreement with a previous report for P. maritima (Rubinigg et al., 2003). It seems to be a general
rule in plants that primary root growth is much less sensitive to nutritional effects than the growth of
second- or higher-order roots (Forde and Lorenzo, 2001).

NO−
3 and total nitrogen concentrations and NR activity in the shoots and roots

In evaluating the effect of salinity on plant NO−
3 and total nitrogen concentrations it should be

stressed that the response was not the same between the shoots and roots. Within each NO−
3 level,

raising salinity reduced the concentrations of NO−
3 and total nitrogen and the NR activities in the roots

and shoots except the shoots at 10 mmol L−1 NO−
3 (Fig. 4). This implied that the well-established NO−

3

uptake and transport systems to the shoots of S. physophora were probably unaffected by high Cl−

concentrations in the plant. Torres and Bingham (1973) found that the most NaCl-tolerant cultivars of
wheat were those which had high leaf NO−

3 concentrations whether the plants were grown under saline
conditions or not. High salt tolerance in S. physophora with optimal nitrogen availability may also be
partly due to an ability to maintain the high shoot NO−

3 concentrations. NO−
3 can act as an osmoticum,

filling vacuoles and driving growth (McIntyre, 1997; Song et al., 2006). The cost of increasing tissue
nitrogen concentration is found to be primarily related to an increase in nitrogen allocation to roots
(Hilbert, 1990). The large root system of S. physophora under salinity with adequate NO−

3 would have
been able to ensure high NO−

3 uptake and transport to the shoots. Dalton et al. (2000) suggested that
plants with larger root growth relative to shoot growth will have a higher ion loading into shoots (Zhang
et al., 1999). However, root growth was not only dependent on the prevailing external nutritional supply
but also on the nutrient status of the plant as a whole. Further work is needed to clarify the potential
contribution of shoot nitrogen demand to root system development of S. physophora.
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