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Abstract The responses to precipitation of Haloxylon
ammodendron (C.A. Mey.) Bunge (Chenopodiaceae), a
small xerophilous tree growing on contrasting textured
soils, were evaluated under no, natural, and double
precipitation treatments during the entire growing sea-
son of 2006. The contrasting textured soils are sandy and
heavy textured, and both are the original habitat of
H. ammodendron at the south edge of Gubantonggute
Desert, Central Asia. Photosynthesis, leaf water poten-
tial, transpiration, water use efficiency and leaf biomass
production were monitored throughout the growing
season. Root distribution of H. ammodendron was
evaluated at the end of the experiment. Overall, this
small tree did not show significant response to a large
summer precipitation pulse or precipitation treatments,
in terms of photosynthetic carbon assimilation on either
soil. The leaf water potential, transpiration, and water
use efficiency appeared to be highly sensitive to a large
precipitation pulse and precipitation treatments in sandy
soil; and leaf biomass production was also much higher
for plants in sandy than that of heavy-textured soil. In
sandy soil, defoliation occurred when pre-dawn leaf
water potential dropped below �3.0 MPa, while in
heavy-textured soil, defoliation occurred when pre-dawn
leaf water potential dropped below �3.75 MPa. For
similar above-ground parts, the small trees at the sandy
site developed much deeper root systems and had nearly
double the surface area of feeder roots compared to
those at the heavy-textured site. Partially owning to the
deeper and larger root system, H. ammodendron growing
at coarse-textured site was in better water conditions

than those at heavy-textured site under the same climatic
conditions.
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Introduction

Water is a key factor limiting ecosystem processes (e.g.,
carbon fixation, plant growth, and respiration) and
functional responses (e.g., net primary production or
NPP) (Cheng et al. 2006; Dube and Pickup 2001; Ehle-
ringer et al. 1999; Sala et al. 1997) in arid and semiarid
regions, where pulses of precipitation are the primary
water source (Cheng et al. 2006). Precipitation patterns
(event size, timing, and frequency) and distribution
further interact with local topography and soil texture,
strongly mediating the dynamics of plant water uptake
through their control on plant water availability
(Hamerlynck et al. 2004; Huxman et al. 2004; McAu-
ligge 1994; Noy-Meir 1973). Small-scale variation in
vegetation, soil surface cover, and soil texture, alters the
amount of water available to plants (Whitford 2003).
Different plant species and functional groups differ in
their response to precipitation pulses (Cheng et al. 2006;
Donovan and Ehleringer 1994; Dougherty et al. 1996;
Flanagan et al. 1992; Golluscio et al. 1998; Loik 2007;
Phillips and Ehleringer 1995). Large precipitation pulses
that percolate deep into the soil profile may provide a
water source that can be utilized by shrubs, which are
typically not as sensitive to summer precipitation as
herbaceous species (Schwinning et al. 2003). However,
to what extent these large summer pulses of water are
utilized by woody species will ultimately depend on the
combination of soil hydraulic characteristics and plant
water use strategy (Fravolini et al. 2003; Hacke et al.
2000; Hultine et al. 2006; Schlesinger and Pilmanis 1998;
Sperry and Hacke 2002). There should be more plant-
available water in sandy soils than in finer-textured clay
soils due to the high infiltration rate, deep percolation,
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and less evaporation of capillary water in coarse soils
(Hamerlynck et al. 2002; McAuligge 1994). Although
clay soils hold more water than sandy soils, water is
more tightly bound to the fine clay particles than to
larger sand particles (Nilsen and Orcutt 1996), so con-
sequently the rates of infiltration are lower and surface
evaporation is higher than for coarse soils. Previous
researches showed that under similar climatic condi-
tions, vegetation in arid habitats is substantially more
vigorous and abundant on coarse, sandy soils than fine-
textured soils (Fravolini et al. 2005; Noy-Meir 1973).
This inverse texture effect is likely a result of differences
in evaporation with soil texture rather than differences in
drainage (Noy-Meir 1973). Soil texture determines soil
hydraulic characteristics, which can have severe conse-
quences for survival of desert plants. Explorations of
physiological response and water use by the same species
to the same precipitation treatment in contrasting soil
textures, and the differences in utilizing precipitation at
one site during the growing period, are necessary in
understanding the mechanisms of desert plant adaption
to seasonal and geographical changes in soil moisture
availability and how these influence both the physio-
logical and morphological features of desert plants.

Haloxylon ammodendron (C.A. Mey.) Bunge
(Chenopodiaceae), a sub-tree xerophilous C4 plant
dominates many areas of Asian deserts (60�N–111�N
and 36�E–48�E) with average annual rainfall between 30
and 200 mm. In China, H. ammodendron, as an impor-
tant component of old Mediterranean flora widely
spread in the Zhunger Basin, northeast of the Tarim
Basin and several other desert areas on a range of soils
(Wu 1980). This species is of great ecological and eco-
nomic importance, not only because it can survive harsh
environmental conditions but it can also stop wind
erosion of sand. H. ammodendron has many xeromor-
phic characteristics (Fahn and Cutler 1992; Huang et al.
2003) of adapting to drought, salinity, poor nutrition,
strong wind, sand movement, and high light intensity.
For example, the leaves are reduced and the succulent
branches perform the function of carbon assimilation
(Huang et al. 1997).

Soil water availability is critical to plant growth and
can vary among and within sites (Larcher 2003; Sultan
et al. 1998). Desert plants are generally well adjusted
to its fluctuations through a variety of physiological,
morphological adaptations, and life-history strategies
(Chesson et al. 2004), as they are typically exposed to
extreme conditions driven chiefly by occasional pulses
of precipitation and high atmospheric evaporative
demand. However, there is a paucity of field studies on
response to precipitation changes for H. ammodendron
growing at sites of contrasting soil textures, and at both
physiological and morphological levels. Therefore,
considering the anticipated changes in precipitation in
this region (Kripalani et al. 2007), we conducted a field
experiment on H. ammodendron growing at sandy and
heavy-textured soil sites with precipitation manipulated
by rain-shelter and artificial rainfall. Through applying

precipitation treatments on H. ammodendron growing in
contrasting soil textures and observing the responses at
physiological and morphological levels, we expected to
achieve two objectives. The first was to explore experi-
mentally the similarity and differences in responses of
H. ammodendron at two sites to large precipitation
pulse. The second objective was to investigate how
H. ammodendron achieved the respective optimal phys-
iological condition and growth at the contrasting soil
sites through effective morphological adjustment at
individual scale.

Materials and methods

Study sites and precipitation

Experiments were conducted during the entire growing
season of H. ammodendron in 2006 (Julian Days 144–
252) in its native habitat adjacent to the Fukang Station
of Desert Ecology, Chinese Academy of Sciences, in the
hinterland of the Eurasian continent (44�17¢N, 87�56¢E,
475 m a.s.l.). This species naturally occurs in very dif-
ferent soil textures: sandy soil at the south edge of
Gurbantonggut Desert (44�15¢N–46�50¢N, 84�50¢E–
91�20¢E), and heavy-textured soil at the fringe of the
alluvial plain (hereafter referred to as ‘‘sandy’’ and
‘‘heavy-textured’’ soils, respectively). The two sites were
approximately 8 km apart without geomorphic change.

This region has a continental arid temperate climate,
with a hot dry summer and cold winter; annual mean
temperature is 6.6�C, annual mean precipitation is
�160 mm, which is about evenly distributed throughout
the year; annual pan evaporation is about 1000 mm.
During the experiment, the precipitation at both sites
was recorded by rain gauges, and it proved that differ-
ence in precipitation between the two habitats was
negligible (40.7 mm at sandy site and 40.8 mm at heavy-
textured site during the whole growing season). Other
meteorological data, such as air temperature, humidity,
global radiation, wind speed and direction etc., were
obtained by an automatic weather station (Campbell
Scientific, Logan, Utah, USA) installed between the two
sites.

Precipitation manipulation and plant material

Three precipitation treatments were applied in each
habitat. No precipitation treatment was realized by a
40 · 40 m removal awning (rain-shelter) installed on a
two rail-track, which was moved onto the plot when it
was raining and moved away when the rain was over.
Natural precipitation is just a marked plot of 40 · 40 m
with no treatment carried out on the H. ammodendron
inside. Double precipitation was realized by adding an
equal amount of irrigation after each rainfall over a
40 · 40 m plot. Irrigation was carried out from a por-
table sprinkler system at the height of 3.5 m, about 1 m
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above the plant canopy. Irrigation speed was controlled
to prevent runoff and surface runoff has not been ob-
served at the two sites during precipitation and irriga-
tion.

H. ammodendron is a sub-tree xerophilous plant that
is native to a variety of central Asian and African desert
habitats, including gravel desert, heavy-textured desert
soil, and sandy desert. Within very short distances with
the same climate, the habitats of H. ammodendron may
change from sand soil to heavy-textured, which is ideal
for the aforementioned study. H. ammodendron is a
major dominant species at both experimental sites. In
each treatment, five plants of approximately average age
and size were selected around the center of the plot for
physiological monitoring and biomass observation. The
selected plants were on average 1.70 m in height and
1.05 m in canopy radius and at about the same age (25–
30 years old).

Soil characterization and analyses

Five samples per soil layer (0–20, 20–40, and 40–150 cm
deep) were taken from both sites and analyzed with a
laser diffraction system (Sympatec GmbH, System-Par-
tikel-Technik, and Clausthal-Zellerfeld, Germany) to
determine soil texture composition. The respective per-
centages of sand, silt, and clay of the sandy soil were 85,
13.7, and 1.3%, and for heavy-textured soil were 22.7,
68.9, and 8.4%.

Changes in soil moisture content (SMC) were
monitored gravimetrically at both sites. Soil samples
were taken randomly by auger over 0–2 m depth at
0.1-m intervals, and repeated three times at each
precipitation treatment at both sites. SMC was deter-
mined by a conventional oven-drying and weighing
method.

Measurement of leaf water potential (WL),
transpiration, and photosynthesis

We measured pre-dawn (Wpd) and midday leaf water
potentials (Wm) on the three precipitation treatments
and at the two sites using a model 3005 Pressure
Chamber (PMS Instrument Company, Albany, OR,
USA). All measurements were on clear days throughout
the growing season. Wpd was measured 20 min before
sunrise, and Wm around solar noon. Small branches with
sufficient leaves were selected, and the sampling was
repeated twice per plant. Thus, for each treatment, five
replicates were taken to determine the average value of
WL at a given time.

The transpiration rate (Tr) was taken as the sap flow
rate measured by a compensated heat-pulse system,
considering that there is strong co-ordination between
liquid phase (sap flow) and vapor phase (transpiration)
water transport in plants (Meinzer 2002). The heat pulse
system was developed original by Cohen et al. (1988) for

small stems or branches with its linear sensor measuring
average sap velocity in the stem/branch (Cohen and Li
1996). Thirty tiny heat-pulse probes (five per treatment
at each site) were installed on branches with diameters of
8–15 mm, and Tr for each branch recorded every 0.5 h.
To minimize the effect of wounding wood matrix, probes
were allowed to stay in one position not longer than
2 weeks before it was moved to another position. To
overcome the effect of variation in branch size, the Tr

value was normalized on a leaf-area basis. To quantify
leaf area of each branch, all foliage on each selected
branch was photographed every 2 weeks with a 6 · 108

pixel digital camera (Canon 300D, Canon Inc., Tokyo,
Japan). The leaf surface area of each branch was cal-
culated from the photographs using CI-400 CIAS soft-
ware (Computer Imaging Analysis Software, CID Co.,
Logan, UT, USA). The Tr value was then converted to a
leaf-specific value according to the leaf surface area of
each branch.

The photosynthetic light–response curves of the spe-
cies were measured by a Li-6400 portable photosynthesis
system (Li-Cor, Lincoln, NE, USA). In-chamber pho-
tosynthetic photon flux density (PPFDi) was controlled
by 20 · 30 mm leaf chamber with a light source (red +
blue 6400-02B). The PPFDi gradient range was
0–2200 lmol m�2 s�1, at intervals of 100 lmol m�2 s�1.
The gas flow rate was set at 400 lmol s�1 to maintain a
reference relative humidity of 20–30%, which is close to
ambient humidity. This resulted in leaf-to-air vapor
pressure deficits (VPDleaf) of 2–3 kPa. Chamber tem-
perature was controlled at 30�C. A CO2-injecting device
was attached to the system to control reference CO2

concentration at 400 lmol mol�1. The measurements
were taken at 1000–1500 h, local time. For plants in each
precipitation treatment, two sets of leaves were measured
from each of the five sample plants. The measured leaves
were those that were youngest, mature, and healthy. The
detailed procedure was described by Xu and Li (2006).
Advanced regression analysis of the non-linear curve
showed that the relationship between net photosynthetic
rate (Pn) and PPFDi was best fitted by exponential
MnMolecular function y = A [1 � e–k(x–xc)], in which x
is PPFDi, y is net photosynthetic rate, parameter A is net
photosynthetic rate at light saturation point (Ps), xc is
PPFDi at the light compensation point (Ic) and k*A is
apparent quantum efficiency of photosynthesis (U).
From a light–response curve fitted to the average data
from each set of reduplicate photosynthesis experiments,
the values of Ps, Ic, and U were calculated to indicate the
photosynthetic capacity in each condition. The notation
and definition of each parameter follows that of
Sage (1994). The photosynthetic water-use efficiency
[WUE (lmol CO2Æmmol�1 H2O), Pn (lmol CO2 m�2

s�1)/Tr (mmol m�2 s�1)] was calculated from Pn and Tr

(obtained from sap flow measurement) at PPFD =
1600 lmol photon m�2 s�1.
The data ‘‘before precipitation’’ and ‘‘after precipi-

tation’’ were collected at two sites on two continuous
days before or after the precipitation day.
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Measurement of leaf area and branch biomass

Above-ground biomass accumulation was observed
throughout the growing season. Under each treatment,
ten well-growing branches were selected and labeled on
each of the five sample plants. All the foliage on each
branch was photographed with a 6 · 108 pixel digital
camera (Canon 300D, Canon Inc, Tokyo, Japan), at
intervals of 2 weeks during the whole growing season.
The total leaf surface area of each branch was calcu-
lated from the photographs using CI-400 CIAS soft-
ware (Computer Imaging Analysis Software, CID Co.,
Logan, UT, USA). Change in the stem surface area of
the labeled branch was traced in the same way. At the
end of the experiment (31st August, Julian Day 243),
the labeled branches were cut. Fresh and dry mass of
leaves and twigs on each branch were weighed to define
the relationship between surface area and dry mass of
the foliage/branch of each plant. On the basis of this
relationship, the surface area of each branch was con-
verted into its dry mass. To eliminate the effect of
initial size difference among branches, a weighing
average was employed for each measurement. The
weighing factor was taken as the reciprocal of the ratio
between initial dry mass of a branch and the initial
average dry mass of all measured braches at one site.
This way, each branch was equally represented in the
average. After taking this weighed average, branch
growth rate during the period between every two
sequential measurements was calculated to represent
the general condition of foliage area expansion and
branch biomass accumulation under each precipitation
treatment.

Root morphological investigation

The investigation of root-system distribution was done
at the end of the experiment (early September, Julian
Days 248–252). With the intention of minimizing
destruction, only three plants in the natural precipitation
treatment at the two sites were excavated to investigate
the morphological characteristics and water-use strate-
gies of the intact root systems. The inner diameter of the
root excavation ditch was 12 m. For each plant, the
surface area of fresh feeder roots was recorded and
calculated for each 0.1 m of the depth in the profile, and
used to derive an overview of the vertical root distri-
bution. For the detailed procedure, see Xu and Li
(2006).

Data analysis

All statistical tests were performed with SPSS (Ver. 16.0)
for Windows. Descriptive statistics were used to calcu-
late means and standard errors for each set of replicates.
A two-way ANOVA with precipitation treatment · soil
type was performed to test the effect of precipitation
treatments, soil textures, and their interactions, SMC,
Wpd, Wm, Tr, Ps, Ic, U, WUE, leaf area per branch,
branch growth rate as response variable. One-way AN-
OVA, followed by Tukey’s or Tamhane’s multiple
comparison tests were used to test differences in mea-
sured means of variable for different treatments at the
same site.

Results

Soil moisture content before and after large
precipitation pulse

For 37 days before the large precipitation pulse on 7 July
2006 (Julian Day 188, 22.8 mm), no significant precipi-
tation pulses occurred (Table 1). After the large pre-
cipitation pulse on Julian Day 188 in July (Table 1),
SMC in the 0–0.3 m layer was significantly influenced in
the sandy soil (F = 7.70, P = 0.022) (Fig. 1a), while
the SMC in the 0–0.1 m layer was significantly influ-
enced in the heavy-textured soil (F = 27.69, P = 0.001)
(Fig. 1b). SMC of the deep layers remained stable at
both sites (Fig. 1). Other rainfall events in the growing
season were not large enough to have a significant effect
on the soil moisture content (Table 1).

Physiological responses after large precipitation pulse

As shown in Fig. 2, Wpd significantly responded to
changes in SMC over the 10-day observation period
(F = 4.92, P = 0.014). At both sites, precipitation
treatment affected Wpd and Wm significantly
(P < 0.001), and the change for Wpd and Wm under
natural and double precipitation treatments significantly
differed from no precipitation treatments (P = 0.05)
(Fig. 2). The decline in WL after the rain pulse showed a
similar pattern among treatments and across sites, but
the relative differences were maintained. Prior to the
large precipitation pulse, Wpd was higher at the sandy
than the heavy-textured site. Following the precipita-
tion, Wpd and Wm showed a greater increase at the sandy

Table 1 Precipitation pulses during the growing season of 2006 at two sites

Precipitation (mm) June (Julian Day) July (Julian Day) August (Julian Day)

155 166 167 170 185 188 201 205 217 229 241 243

Sandy site 1.7 2.6 0.4 1.3 0.4 22.8 3.8 1.2 0.9 3.9 0.8 0.9
Heavy-textured site 1.6 2.8 0.6 1.4 0.3 22.8 3.5 0.8 1.0 4.0 1.0 1.0
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than the heavy-textured site, although the differences
were not statistically significant. Overall, H. ammoden-
dron at the sandy site maintained less negative Wpd and
Wm than at the heavy site. Moreover, the rate of Wpd and
Wm decreases after the precipitation was bit slower at the
sandy than at the heavy-textured site (Fig. 2).

The photosynthetic capacities of H. ammodendron
after the large precipitation pulse did not significantly
differ among treatments and between sites (P = 0.05)
(Fig. 3a–f). However, at the sandy site, Tr was signifi-
cantly different among treatments (F = 7.30,
P = 0.025) (Fig. 3b), with the lowest at the no-rainfall
treatment. Consequently, the photosynthetic WUE
(F = 17.10, P = 0.003) (Fig. 3c) was highest for the

no-rainfall treatment. At the heavy-textured site, Tr and
photosynthetic WUE were not significantly different
among treatments (Fig. 3e, f).

Seasonal variations in plant physiology

At both sites, plants that received the double precipita-
tion had significantly higher Wm than those under
no-precipitation treatment, but not significantly higher
than plants in the natural precipitation treatment during
the growing season (F = 12.88, P < 0.001) (Fig. 4).
H. ammodendron responded to variations in precipita-
tion in terms of WL; however, the Ps, Ic and U showed
that photosynthetic capacity was not influenced by
precipitation or soil texture (Fig. 5; Table 2). The sea-
sonal change in Ps showed that the growth climax of
H. ammodendron was in mid-June (Julian Days 158–
173), and was not related to rainfall events or texture
differences (Fig. 5a, d). However, H. ammodendron
growing in contrasting soils showed somewhat different
physiological responses to precipitation. The plants in
sandy soil had consistently higher water potentials than
plants of the same treatment in heavy-textured soil,
indicating a generally superior water status at the sandy
site (Fig. 4). At the sandy site there was a significant
difference in Wpd between no precipitation and the other
two treatments (F = 6.47, P = 0.003), but there was no

Fig. 1 Soil moisture content (%) under no precipitation (triangle
with line), natural precipitation (circle with line) and double
precipitation treatment (square with line) at two contrasting
textured soils (a, b) right after a large precipitation pulse on Julian
Day 188 (22.8 mm). Each value is the mean for three replications
± SE. Error bars represent the standard error of the mean

Fig. 2 Daily changes of leaf water potential for H. ammodendron
following a large precipitation (22.8 mm) under no precipitation
(triangle with line), natural precipitation (circle with line) and
double precipitation treatment (square with line) across two
contrasting soil textures with two-way ANOVA (P = 0.05)
(a, b). Day 0 is 6 July 2006 (Julian Day 188). Each value is the
mean for five replications ±SE. Error bars represent the standard
error of the mean. Different lowercase letters indicate significant
differences under three precipitation treatments on each day with
one-way ANOVA (P = 0.05)

Fig. 3 Comparison of physiological response in drought (open
rectangle) and after a large precipitation (22.8 mm) (filled rectangle)
among three precipitation treatments in sandy soil (a–c) and heavy-
textured soil (d–f) for H. ammodendron with two-way ANOVA
(P = 0.05). Each value is the mean for five replications ±SE.
Error bars represent the standard error of the mean. The asterisk
indicates significant difference under three precipitation treatments
with one-way ANOVA (P = 0.05)

189



significant difference between the natural precipitation
and double precipitation treatments over the growing
season (Fig. 4a; Table 2). Tr and WUE of H. ammo-
dendron differed significantly among treatments in sandy
soil (P < 0.001) (Fig. 6a, b; Table 2), implying that gas
exchange of H. ammodendron was affected by precipi-
tation. However, in the heavy-textured soil, the seasonal

change of Wpd did not differ significantly during the
growing season (Fig. 4b; Table 2) among three precipi-
tation treatments; neither did Tr and WUE among
treatments (Fig. 6c, d; Table 2).

Above-ground biomass accumulation
and root distribution

During the growing season, leaf area per branch and
branch growth rate of H. ammodendron showed positive
relationships with precipitation treatments for both soils
(Fig. 7, Table 2). The climax of branch growth rate of
H. ammodendron in both soils and all precipitation
treatments was on Julian Days 158–173 in mid-June
(Fig. 7b, d), which showed a strong co-occurrence with
photosynthesis (Fig. 5a, d). In addition, leaf expansion
and branch growth slowed down with soil water deple-
tion at both sites; even though, in sandy soil, precipita-
tion did not significantly influence the seasonal average
of leaf area per branch and branch growth rate (Fig. 7a,
b; Table 2). The branch growth rate of H. ammodendron
in the no-precipitation treatment became negative in
early August (Julian Day 214), indicating defoliation;
this never occurred in the other treatments (Fig. 7b). In
the heavy-textured soil, the leaf area per branch and
branch growth rate significantly differed among the
three treatments during the growing season (P = 0.05)
(Fig. 7c, d, Table 2). The leaf area per branch of
H. ammodendron was less than that in sandy soil on each
measuring day (Fig. 7a, c). The branch growth rate
of H. ammodendron under no-precipitation treatment
became negative in late July (Julian Day 203), earlier
than for sandy soil (Fig. 7d). This showed that the
absence of precipitation inhibited branch growth more
severely at the heavy-textured than at the sandy site.

The vertical distribution of lateral roots under natu-
ral precipitation on contrasting soils showed different
patterns. In sandy soil, the main root of H. ammoden-
dron extended to an average depth of 10 m. More than
50% of feeder roots (in terms of surface area) were in the
depth interval of 0–3 m (Fig. 8a). The total surface area
of feeder roots was 1.7578 m2 per plant (Fig. 8b). In
heavy-textured soil, the main root extended to an aver-
age depth of 3.3 m, with >50% of feeder roots (in terms
of surface area) in the depth interval of 0–1 m (Fig. 8a).
The surface area of feeder roots was 0.9717 m2 per plant
(Fig. 8b), which was only about half compared to plants
at the sandy site.

Wpd as an indicator of plant water status

The effects of precipitation pulses on Wpd were detected
1 day after the precipitation (Fig. 2). The correlation
between Wpd and precipitation amount indicated a better
recovery of plant water status for H. ammodendron in
sandy soil following the same precipitation pulse com-
pared to heavy-textured soil (Fig. 9a). Ps was not related

Fig. 4 Seasonal changes in leaf water potential of H. ammodendron
under no precipitation (triangle with line), natural precipitation
(circle with line) and double precipitation treatment (square with
line) across two contrasting textured soils with two-way ANOVA
(P = 0.05) (a, b). Each value is the mean for five replications ±SE.
Error bars represent the standard error of the mean. Different
lowercase letters indicate significant differences under three precip-
itation treatments on each day with one-way ANOVA (P = 0.05)

Fig. 5 Seasonal changes in net photosynthetic rate at light
saturation point (Ps), apparent quantum efficiency of photosyn-
thesis (U), and photosynthetic photon flux density at light
compensation point (Ic) of H. ammodendron under no precipitation
(triangle with line), natural precipitation (circle with line) and
double precipitation treatment (square with line) between sandy soil
(a–c) and heavy-textured soil (d–f) with two-way ANOVA
(P = 0.05). Each value is the mean for five replications ±SE.
Error bars represent the standard error of the mean
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to Wpd at either site, indicating stable carbon assimila-
tion (on a leaf area basis) independent of plant water
conditions (Fig. 9b). The branch growth rate increased
with Wpd in both soils through all precipitation treat-
ments. H. ammodendron at the sandy site experienced
better water conditions throughout the growing season,
which ensured a higher growth rate under the same
precipitation treatment compared to heavy-textured soil
(Fig. 9c). The weaker relationship between Wpd and
branch growth rate in sandy soil (R2 = 0.57) indicated
that growth was less restricted than in heavy-textured
soil. The negative relationship between WUE and Wpd

indicated the WUE of H. ammodendron increased under
water stress at either site. The stronger relationship

between WUE and Wpd at the sandy site (R2 = 0.85)
indicated a much larger buffering capability against
wetting–drying events for H. ammodendron at this site
(Fig. 9d).

Discussion

How does H. ammodendron respond to precipitation
pulses at contrasting textured soils?

On the basis of basic plant physiology, we might expect
H. ammodendron to respond strongly to occasional rain-
fall or sustained drought. Contrary to such a prediction,
there was no significant photosynthetic response to large
summer pulse or sustained drought during the season in

Table 2 Comparison of mean physiological and growth parameters of H. ammodendron throughout the growing season under three
precipitation treatments (none, natural, and double) at two contrasting textured soils

Parameters Sandy soil Heavy-textured soil

None Natural Double None Natural Double

Wpd (MPa) �2.95 ± 0.05b �2.49 ± 0.05a �2.41 ± 0.05a �3.70 ± 0.06a �3.61 ± 0.06a �3.53 ± 0.05a
Ps (lmol CO2 m

�2 s�1) 9.59 ± 0.48a 9.60 ± 0.62a 9.59 ± 0.48a 9.72 ± 0.72a 9.51 ± 0.69a 9.51 ± 0.82a
Tr (mmol H2O m�2 s�1) 1.11 ± 0.06a 1.44 ± 0.14b 1.97 ± 0.22c 1.19 ± 0.11a 1.32 ± 0.09a 1.41 ± 0.07a
WUE (lmol CO2Æmmol H2O

�1) 8.60 ± 0.27a 6.68 ± 0.38b 4.87 ± 0.35c 8.15 ± 0.42a 7.19 ± 0.40a 6.75 ± 0.45a
Leaf area (m2) 50.56 ± 1.57a 54.17 ± 2.03a 58.86 ± 1.49a 40.58 ± 1.25a 45.64 ± 1.04b 52.30 ± 0.74c
Branch growth rate (10�3g day�1) 14.33 ± 2.96a 20.97 ± 4.21a 22.95 ± 1.95a 0.05 ± 1.93a 10.43 ± 2.36b 16.76 ± 2.23c

Values are mean ± SE. Values in the same half-row (for one soil) with the same letter are not significantly different at P = 0.05, and
values with different letters are significantly different at P = 0.05 with one-way ANOVA

Fig. 6 Seasonal changes in maximal transpiration rate (Tr) and
photosynthetic water-use efficiency (WUE) at PPFD = 1600 lmol
photon m�2 s�1 for H. ammodendron under no precipitation
(triangle with line), natural precipitation (circle with line), double
precipitation treatment (square with line) at sandy soil (a, b) and
heavy-textured soil (c, d) with two-way ANOVA (P = 0.05). Each
value is the mean for five replications ±SE. Error bars represent
the standard error of the mean. The asterisk (*) indicates significant
difference for each reading under three precipitation treatments
with one-way ANOVA (P = 0.05)

Fig. 7 Seasonal changes in leaf area per branch and growth rate of
branch biomass of H. ammodendron under no precipitation (open
rectangle), natural precipitation (hashed rectangle), and double
precipitation treatment (closed rectangle) in sandy soil (a, b) and
heavy-textured soil (c, d) with two-way ANOVA (P = 0.05). Each
value is the mean for five replications ±SE. Error bars represent
the standard error of the mean. The asterisk (*) indicates significant
difference for each reading under three precipitation treatments
with one-way ANOVA (P = 0.05)
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either soil (Figs. 3, 5; Table 2). Typical photosynthetic
characteristics of C4 species (Pyankov et al. 1999) were
shown by H. ammodendron, such as a lower U at low
PPFD, higher Ic (Fig. 5a–f), which all contributed to its

strong xeromorphic features. The consistency of Ic and U
during the growing season indicated that its photosyn-
thetic activities were maintained at a stable high level
within a wide range of WL from �5.68 to �2.54 MPa

(Figs. 2, 4, 9). Xu et al. (2007) reported that such pho-
tosynthetic consistency was achieved either by strategic
adaptation in water use, or by integrated physiological
and morphological regulations. It has been suggested
that, over the short term, drought has a substantial
impact on gas exchange (Schulze 1993), and over the long
term, structural changes could alleviate the direct effects
of water stress on gas exchange (Geiger and Servaites
1991). Under natural precipitation, the seasonal fluctua-
tion in Ps showed the growth climax in mid-June (Julian
Days 158–173) for both soils (Fig. 5a, d), which agreed
with the latter assertion.

Significant differences in soil texture can account for
the apparent discrepancy in SMC reported here (Hacke
et al. 2000; Hennessy et al. 1985; Noy-Meir 1973)
(Fig. 1). Van de Griend and Owe (1994) suggested that
while coarse-textured soils dry out quickly during the
constant rate phase of evaporation, resistance to evap-
oration increases quickly as pore spaces dry out.
Therefore, evaporation rates in coarse soils may be
surpassed by evaporation rates of finer soils that are still
evaporating via water conduction (Philip 1957). Not
surprisingly, the heavy-textured soil with higher evapo-
ration rate limited infiltration of moisture inputs during
summer, thus reducing the effectiveness of a large rain
pulse (Xu and Li 2008), which was clearly demonstrated
by the effect of rainfall on Wpd (Fig. 9a). In fact, after the
large rain pulse, both Wpd and Wm decreased more
rapidly in heavy-textured than sandy soil (Fig. 2).

Theory predicts that coarse-textured soils hold water
less tightly (with less negative matrix potential) than fi-
ner-textured soils (Noy-Meir 1973). Thus, plants grow-
ing in sandy soils require less negative water potential to
extract water than plants in a loam or finer soil (Hacke
et al. 2000; Sperry and Hacke 2002). We showed that
plants growing in sandy soil had consistently higher
water potentials than plants under the same treatment in
heavy-textured soil, which supports those assertions.
The negative correlation between WUE and Wpd in both
soils (Fig. 9d) showed that high sensitivity to soil
moisture availability ensured increased WUE under
water stress. At the sandy site, Tr and WUE of H. am-
modendron appeared to be highly sensitive to a large
precipitation pulse and differed significantly between
precipitation treatments during the growing season
(Fig. 6a, b; Table 2;). When water is plentiful, decreased
WUE associated with high Tr can be adaptive (Donovan
and Ehleringer 1992). The lower WUE after the large
summer precipitation pulse and under double precipi-
tation suggested a lack of tight stomatal control under
favorable water conditions (Fig. 6b, Table 2). Overall,
WL, Tr, and WUE of H. ammodendron all depended on
precipitation. However, at the heavy-textured site, the
WL, Tr, and WUE were not significantly affected by
precipitation over the season (Figs. 4b, 6c, d; Table 2),

Fig. 8 Root distribution of H. ammodendron in sandy soil (circle
with line) and heavy-textured soil (triangle with line) at the end of
the natural precipitation treatment. a Vertical distribution of feeder
roots throughout the soil profile across two contrasting soil
textures at the end of the natural precipitation treatment; b the
total feeder root area across two contrasting soil textures at the end
of the natural precipitation treatment. Error bars represent the
standard error of the mean

Fig. 9 Correlation between pre-dawn leaf water potential (Wpd) of
H. ammodendron and related factors in sandy soil (circle) and
heavy-textured soil (square) during the growing season. a Corre-
lation between Wpd and precipitation (mm). b Correlation between
photosynthetic rate at light saturation point (Ps) and Wpd of both
soils. c Correlation between branch growth rate and Wpd of both
soils. d Correlation between photosynthetic water use efficiency
(WUE) and Wpd of both soils. The data from three treatments are
all plotted. PPFD: photosynthetic photo flux density
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indicating the limited water availability in fine-textured
soil. Moreover, WUE in the heavy-textured site for both
natural and double precipitation treatments were higher
than those in sandy soil, which indicated that increased
WUE conserved water (Heschel and Hausmann 2001;
Heschel et al. 2004; Zangerl and Bazzaz 1984).

Importance of morphological adaptation

There are a wide variety of morphological, anatomical,
and physiological characteristics that either serve as
adaptations or act to buffer plants against the damaging
effects of water deficits. The balance between water
supply and demand in a plant can be maintained by
morphological adjustment of shoot and root systems, as
found in some small tree species (Donovan and Ehle-
ringer 1994). In our case, H. ammodendron obviously
also benefited from effective morphological adjustment,
in which both defoliation and the root system adjust-
ment acted effectively to maintain photosynthetic sta-
bility (Figs. 3, 7, 8). However, the effectiveness/
sensitivity of this morphological adjustment was obvi-
ously not the same for the two sites. In sandy soil, when
Wpd < �3.0 MPa, the assimilative organ defoliated
(Fig. 9c, when branch growth rate<0). In heavy-tex-
tured soil, H. ammodendron had less leaf area per branch
to reduce the transpiring surface, and defoliation oc-
curred until Wpd < �3.75 MPa (Fig. 9c, when branch
growth rate <0). The higher sensitivity of branch
growth to Wpd at sandy site indicated a more effective
morphological adjustment to water conditions, which is
also partially responsible for the better plant water sta-
tus at this site (Figs. 2, 4).

Plants can acclimate to different environments through
modifying the amount or distribution of roots tomaintain
its regular activities (Li et al. 2005). The root system
develops in accordance with a species-specific morpho-
logical pattern and to the extent that local conditions
permit (Larcher 2003). Although plants in sandy soil can
access water with higher leaf water potentials, they may
also require deeper roots in a drought-prone habitat than
plants in finer soils (Hacke et al. 2000). H. ammodendron
developedmore feeder roots in sandy compared to heavy-
textured soil (Fig. 8), showing that plants at coarse soils
have a greater need to develop more roots. Functionally,
plants that have greater water acquisition potential from
high biomass allocation to roots may not require in-
creased WUE to persist in drought conditions. Con-
versely, plants that allocate less biomass to roots might
require higher WUE in persistent drought conditions
because of the lower water acquisition capacity of the
smaller root surface areas (Griffith et al. 2004).

Conclusions

This is an integrated research on detailed physiological
response to precipitation and morphological character-

istics in contrasting textured soils of H. ammodendron.
These results indicate that the selective use of physiolog-
ical and morphological modes of stress response may
reflect a compensatory relationship among traits. H. am-
modendron coped with changes in precipitation at given
soil hydraulic characteristics, chiefly through effective
morphological adjustment combined with appropriate
physiological responses. The active acclimation induced
by special environmental conditions formed the founda-
tion of buffering ability against extreme environmental
variations; this buffering capacity is stronger for H. am-
modendron growing at a sandy site than at a heavy-tex-
tured site. As dominated species in desert control both the
overall biomass and primary productivity of the desert
ecosystem, its good performance will, to a great extent,
determine the better future of the desert ecosystem at
sandy site.
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