56 research outputs found

    The onset of convection in rotating circular cylinders with experimental boundary conditions

    Get PDF
    Convective instabilities in a fluid-filled circular cylinder heated from below and rotating about its vertical axis are investigated both analytically and numerically under experimental boundary conditions. It is found that there exist two different forms of convective instabilities: convection-driven inertial waves for small and moderate Prandtl numbers and wall-localized travelling waves for large Prandtl numbers. Asymptotic solutions for both forms of convection are derived and numerical simulations for the same problem are also performed, showing a satisfactory quantitative agreement between the asymptotic and numerical analyses

    On the initial-value problem in a rotating circular cylinder

    Get PDF
    Copyright © 2008 Cambridge University PressThe initial-value problem in rapidly rotating circular cylinders is revisited. Four different but related analyses are carried out: (i) we derive a modified asymptotic expression for the viscous decay factors valid for the inertial modes of a broad range of frequencies that are required for an asymptotic solution of the initial value problem at an arbitrarily small but fixed Ekman number; (ii) we perform a fully numerical analysis to estimate the viscous decay factors, showing satisfactory quantitative agreement between the modified asymptotic expression and the fuller numerics; (iii) we derive a modified time-dependent asymptotic solution of the initial value problem valid for an arbitrarily small but fixed Ekman number and (iv) we perform fully numerical simulations for the initial value problem at a small Ekman number, showing satisfactory quantitative agreement between the modified time-dependent solution and the numerical simulations

    On fluid flows in precessing narrow annular channels: asymptotic analysis and numerical simulation

    Get PDF
    Copyright © 2010 Cambridge University PressWe consider a viscous, incompressible fluid confined in a narrow annular channel rotating rapidly about its axis of symmetry with angular velocity Ω that itself precesses slowly about an axis fixed in an inertial frame. The precessional problem is characterized by three parameters: the Ekman number E, the Poincaré number ε and the aspect ratio of the channel Γ. Dependent upon the size of Γ, precessionally driven flows can be either resonant or non-resonant with the Poincaré forcing. By assuming that it is the viscous effect, rather than the nonlinear effect, that plays an essential role at exact resonance, two asymptotic expressions for ε ≪ 1 and E ≪ 1 describing the single and double inertial-mode resonance are derived under the non-slip boundary condition. An asymptotic expression describing non-resonant precessing flows is also derived. Further studies based on numerical integrations, including two-dimensional linear analysis and direct three-dimensional nonlinear simulation, show a satisfactory quantitative agreement between the three asymptotic expressions and the fuller numerics for small and moderate Reynolds numbers at an asymptotically small E. The transition from two-dimensional precessing flow to three-dimensional small-scale turbulence for large Reynolds numbers is also investigated

    A NEW THEORY FOR CONVECTION IN RAPIDLY ROTATING SPHERICAL SYSTEMS

    Get PDF
    Summary Thermal convection in rapidly rotating, self-gravitating Boussinesq fluid spherical systems is a classical problem and has important applications for many geophysical and astrophysical problems. The convection problem is characterized by the three physical parameters, the Rayleigh number R, the Prandtl number P r and the Ekman number E. This paper reports a new convection theory in rapidly rotating spherical systems valid for E 1 and 0 ≤ Pr < ∞. The new theory units the two previously disjointed subjects in rotating fluids: inertial waves and thermal convection. Both linear and nonlinear properties of the problem will be discussed

    On fluid flows in precessing spheres in the mantle frame of reference

    Get PDF
    Copyright © 2010 American Institute of PhysicsWe investigate, through both asymptotic and numerical analysis, precessionally driven flows of a homogeneous fluid confined in a spherical container that rotates rapidly with angular velocity Ω and precesses slowly with angular velocity Ωp about an axis that is fixed in space. The precessionally driven flows are primarily characterized by two dimensionless parameters: the Ekman number E providing the measure of relative importance between the viscous force and the Coriolis force, and the Poincaré number Po quantifying the strength of the Poincaré forcing. When E is small but fixed and |Po| is sufficiently small, we derive a time-dependent asymptotic solution for the weakly precessing flow that satisfies the nonslip boundary condition in the mantle frame of reference. No prior assumption about the spatial-temporal structure of the precessing flow is made in the asymptotic analysis. A solvability condition is derived to determine the spatial structure of the precessing flow, via a selection from a complete spectrum of spherical inertial modes in the mantle frame. The weakly precessing flow within the bulk of the fluid is characterized by an inertial wave moving retrogradely. Direct numerical simulation of the same problem in the same frame of reference shows a satisfactory agreement between the time-dependent asymptotic solution and the nonlinear numerical simulation for sufficiently small Poincaré numbers

    Countertraveling waves in rotating Rayleigh-Bénard convection

    Get PDF
    Linear and nonlinear counter-traveling waves in a fluid-filled annular cylinder with realistic no-slip boundary conditions uniformly heated from below and rotating about a vertical axis are investigated. When the gap of the annular cylinder is moderate, there exist two three-dimensional traveling waves driven by convective instabilities: a retrograde mode localized near the outer sidewall and a prograde mode adjacent to the inner sidewall with a different wave number, frequency and critical Rayleigh number. It is found that the retrogradely propagating mode is always more unstable and is marked by a larger azimuthal wave number. When the Rayleigh number is sufficiently large, both the counter-traveling modes can be excited and nonlinearly interacting, leading to an unusual nonlinear phenomenon in rotating Rayleigh-Bénard convection

    Inertial convection in a rotating narrow annulus: Asymptotic theory and numerical simulation

    Get PDF
    The following article appeared in Physics of Fluids, 2015, Volume 27, and may be found at http://scitation.aip.org/content/aip/journal/pof2/27/10/10.1063/1.4934527.An important way of breaking the rotational constraint in rotating convection is to invoke fast oscillation through strong inertial effects which, referring to as inertial convection, is physically realizable when the Prandtl number Pr of rotating fluids is sufficiently small.We investigate, via both analytical and numerical methods, inertial convection in a Boussinesq fluid contained in a narrow annulus rotating rapidly about a vertical symmetry axis and uniformly heated from below, which can be approximately realizable in laboratory experiments [R. P. Davies-Jones and P. A. Gilman, “Convection in a rotating annulus uniformly heated from below,” J. Fluid Mech. 46, 65-81 (1971)]. On the basis of an assumption that inertial convection at leading order is represented by a thermal inertial wave propagating in either prograde or retrograde direction and that buoyancy forces appear at the next order to maintain the wave against the effect of viscous damping, we derive an analytical solution that describes the onset of inertial convection with the non-slip velocity boundary condition. It is found that there always exist two oppositely traveling thermal inertial waves, sustained by convection, that have the same azimuthal wavenumber, the same size of the frequency, and the same critical Rayleigh number but different spatial structure. Linear numerical analysis using a Galerkin spectral method is also carried out, showing a quantitative agreement between the analytical and numerical solutions when the Ekman number is sufficiently small. Nonlinear properties of inertial convection are investigated through direct three-dimensional numerical simulation using a finite-difference method with the Chorin-type projection scheme, concentrating on the liquid metal gallium with the Prandtl number Pr = 0.023. It is found that the interaction of the two counter-traveling thermal inertial waves leads to a timedependent, spatially complicated, oscillatory convection even in the vicinity of the onset of inertial convection. The nonlinear properties are analyzed via making use of the mathematical completeness of inertial wave modes in a rotating narrow annulus, suggesting that the laminar to weakly turbulent transition is mainly caused by the nonlinear interaction of several inertial wave modes that are excited and maintained by thermal convection at moderately supercritical Rayleigh numbers.Leverhulme TrustMacau FDCTChinese Academy of Science

    Simulations of nonlinear pore-water convection in spherical shells

    Get PDF
    Copyright © 2008 American Institute of PhysicsHydrothermal convection of pore water of uniform viscosity within a permeable, internally heated spherical shell bounded by two concentric spherical surfaces of inner radius ri and outer radius ro is investigated by fully three-dimensional numerical simulations based on a domain decomposition method. We first determine the critical Rayleigh number for the onset of hydrothermal convection by expressing linear solutions in terms of spherical Bessel functions. It is found that the basic motionless state becomes unstable with respect to an infinitesimal disturbance characterized by a spherical harmonic of degree l, the size of which is strongly dependent upon the aspect ratio ri/ro. However, the three-dimensional structure of convection cannot be determined by the stability analysis because of the mathematical degeneracy of the linear solution. A new numerical scheme using a finite difference method is then employed to simulate three-dimensional nonlinear convection near the onset of convection. When the aspect ratio (ro−ri)/ro is moderately small, a large number of different stable stationary patterns with exactly the same Rayleigh number are found by using different initial conditions. The solutions are relevant to the convectively forced circulation of water in the interiors of early solar system bodies and outer planet icy satellites

    Linear and nonlinear instabilities in rotating cylindrical Rayleigh-Bénard convection

    Get PDF
    Copyright © 2008 The American Physical SocietyLinear and nonlinear convection in a rotating annular cylinder, under experimental boundary conditions, heated from below and rotating about a vertical axis are investigated. In addition to the usual physical parameters such as the Rayleigh and Taylor number, an important geometric parameter, the ratio of the inner to outer radius, enters into the problem. For intermediate ratios, linear stability analysis reveals that there exist two countertraveling convective waves which are nonlinearly significant: a retrograde wave located near the outer sidewall and a prograde wave adjacent to the inner sidewall. Several interesting phenomena of nonlinear convection are found: (i) tempospatially modulated countertraveling waves caused by an instability of the Eckhaus-Benjamin-Feir type, (ii) destructive countertraveling waves in which the existence or disappearance of the prograde wave is determined by its relative phase to the retrograde wave, and (iii) a saddle-node-type bifurcation in which the prograde wave takes an infinite amount of time to pass over the retrograde wave
    corecore