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We investigate, through both asymptotic and numerical analysis, precessionally driven flows of a
homogeneous fluid confined in a spherical container that rotates rapidly with angular velocity � and
precesses slowly with angular velocity �p about an axis that is fixed in space. The precessionally
driven flows are primarily characterized by two dimensionless parameters: the Ekman number E
providing the measure of relative importance between the viscous force and the Coriolis force, and
the Poincaré number Po quantifying the strength of the Poincaré forcing. When E is small but fixed
and �Po� is sufficiently small, we derive a time-dependent asymptotic solution for the weakly
precessing flow that satisfies the nonslip boundary condition in the mantle frame of reference. No
prior assumption about the spatial-temporal structure of the precessing flow is made in the
asymptotic analysis. A solvability condition is derived to determine the spatial structure of the
precessing flow, via a selection from a complete spectrum of spherical inertial modes in the mantle
frame. The weakly precessing flow within the bulk of the fluid is characterized by an inertial wave
moving retrogradely. Direct numerical simulation of the same problem in the same frame of
reference shows a satisfactory agreement between the time-dependent asymptotic solution and the
nonlinear numerical simulation for sufficiently small Poincaré numbers. © 2010 American Institute
of Physics. �doi:10.1063/1.3515344�

I. INTRODUCTION

As an alternative cause for generating and maintaining
the geomagnetic field,1,2 precessionally driven flows in
spherical/spheroidal geometry have been studied for a long
time. Energetically, it has been estimated that there is abun-
dant precessional energy to drive the geodynamo.3 Experi-
mentally, it has been demonstrated that spatially complex
flows, which are usually required for dynamo action, can
occur in strongly precessing systems.2,4–7 Computationally, it
has been convincingly shown that procession-driven flows
can indeed generate and sustain magnetic fields.8–10 Two spe-
cial features of the precession problem—the abundant energy
and the persistent nature—make it significant in many geo-
physical and astrophysical problems, providing a strong im-
petus to the research on the subject. The present paper is
concerned with a viscous, incompressible fluid occupying a
full sphere that rotates rapidly with angular velocity � and
precesses slowly with angular velocity �p. The precession
vector �p is fixed in space and inclined at an angle � with
respect to the rotation vector �, and fluid motion is driven
by the precessing spherical container only through the vis-
cous coupling between the rigid container and the weakly
viscous fluid.

Over the past several decades, the problem of precessing
flows in fluid spheres has been investigated by theoretical
methods6,11–14 and by numerical simulations.5,15–17 In previ-
ous theoretical studies, a frame of reference rotating about
the precession axis �p �the precession frame� is usually

adopted and, furthermore, the precessing flow u is assumed
to be stationary, and is then governed by

u · �u + 2�p � u = −
1

�
� p + ��2u , �1�

� · u = 0, �2�

where � is the kinematic viscosity of the fluid, � is the fluid
density, p is a reduced pressure, and u is the three-
dimensional velocity field. It should be noted that, in this
particular frame, both the rotation vectors, � and �p, are
independent of time and that the nonslip boundary condition
requires

u = � � r �3�

on the bounding surface S of the spherical container, where r
is the position vector. The mathematical analysis in the pre-
cession frame becomes particularly convenient by further
postulating that the precessing flow is not only stationary but
also in the form of rigid-body rotation given by

u = �F � r , �4�

where �F is a constant vector. The remaining task of the
analysis is then to determine the stationary vector �F. By
taking into account the viscous effect in the thin viscous
boundary layer, Roberts and Stewartson12 determined both
the amplitude and orientation of the rigid-body rotation.
Their analysis was later extended by Busse13 who incorpo-
rated the weakly nonlinear effect within the boundary layer
and established the profile of the relevant differential rota-
tion. Taking advantage of the rigid-body-rotation assump-a�Electronic mail: kzhang@ex.ac.uk.
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tion, a relatively simple torque-balance approach was also
successfully employed to evaluate �F by Noir et al.;6 see
also Ref. 14.

The present investigation attempts to improve the under-
standing of the nature of the precessionally driven flows in a
full sphere through a different asymptotic approach. In our
asymptotic analysis, the mantle frame of reference will be
adopted and, more significantly, no prior assumptions about
the spatial-temporal structure of the precessing flow will be
made. For several reasons it is desirable to adopt the mantle
frame of reference in the theoretical analysis although it is
mathematically more complicated. All the theoretical studies
of rotating convection and planetary dynamos are conducted
using the mantle frame of reference. In many respects, the
mathematical problem of precessionally driven flows in a
sphere is similar to that of buoyancy-driven convection and,
indeed, Vanyo et al.4 in an experimental study demonstrated
that the basic elements of precessing flows are largely the
same as those in buoyancy-driven convection. Treating the
precessing flow in the same frame as that for the convection/
dynamo problem would help develop a unified mathematical
theory. Finally, the adoption of the mantle frame is also of
practical importance because most geophysical observations/
phenomena such as the core flow are made/described in the
Earth’s mantle frame and many measurements of the precess-
ing flow in experimental studies are made in the mantle
frame.

As discussed by Tilgner,18 the analytical work on pre-
cessing flows is generally easier in the precession frame;
theoretical studies using the mantle frame are much harder.
With the time dependence introduced by adopting the mantle
frame, it seems inappropriate because of the complicated
time-dependent term r� ��p�t���� in the governing equa-
tion �see Eqs. �5� and �9� for detail�, to make a prior assump-
tion that the precessing flow in the mantle frame is in the
form of rigid-body-rotation. This complication may explain
why no theoretical studies in the mantle frame of reference,
despite its practical importance, have been carried out. In the
meantime, it is nontrivial to derive an analytical solution for
the precessing flow u in the mantle frame that satisfies the
nonslip condition by transforming the existing rigid-body-
rotation solution together with the stationary boundary-layer
solution to the mantle frame. In fact, there does not exist an
analytical solution in the mantle frame for the precessing
flow u—the time-dependent mainstream flow plus the time-
dependent boundary layer solution—in the literature.

As a consequence of using the mantle frame, our theo-
retical approach has to be both physically and mathemati-
cally different from previous ones. Physically, the leading-
order solution in the limits �=0 and �p=0 is described by
the complete spectrum of spherical inertial oscillation and
waves19,20 whose explicit analytical solutions are available.21

When the container precesses slowly ��p�0� and the fluid
is slightly viscous ���0�, the resulting Poincaré force,
through the viscous coupling between the spherical container
and the fluid, selects and excites either a single inertial mode
or a number of inertial modes from the complete spectrum.
Mathematically, in the mantle frame of reference, the
selection/excitation process forms a perturbation problem in

that both the structure and amplitude of precessionally driven
flows are determined without the need to make any prior
assumption.

In what follows we shall begin by presenting the gov-
erning mathematical equations of the problem in Sec. II. The
asymptotic analysis for weakly precessing flows, together
with its validation by direct numerical simulation, is dis-
cussed in Sec. III. A summary and some remarks are given in
Sec. IV.

II. MATHEMATICAL FORMULATION
OF THE PROBLEM

Consider a viscous, homogeneous fluid confined in a
spherical container of radius ro. Suppose that the container
rotates rapidly with angular velocity ẑ� where ẑ is a unit
vector and, at the same time, precesses slowly with angular
velocity �p that is fixed in space and inclined at an angle �
�0���� /2� to ẑ. In the numerical analysis validating our
asymptotic analytical solution, we shall focus on the case
�=23.5° which represents the Earth’s precession caused by
the luni-solar torque. In a frame of reference attached to the
spherical container, the mantle frame, processionally driven
flows in an incompressible fluid are governed by the dimen-
sional equations17,19

�u

�t
+ u · �u + 2��ẑ + �p� � u

= −
1

�
� p + ��2u + r � ��p � ��ẑ�� , �5�

� · u = 0, �6�

where �p is time-dependent in the mantle frame, p is a re-
duced pressure, u is the three-dimensional velocity field u
= �ur ,u	 ,u
� with corresponding unit vectors �r̂ , �̂ ,�̂� in
spherical polar coordinates �r ,	 ,
� with 	=0 at the axis of
ẑ� and r=0 at the center of the sphere. The final term on the
right-hand side of Eq. �5� is known as the Poincaré force,
which drives precessional flows against viscous dissipation.

We employ the radius of the sphere, ro, as the length
scale, �−1 as the unit of time, and �ro

2�2 as the unit of
pressure, which gives rise to the dimensionless equations

�u

�t
+ u · �u + 2�ẑ + Po�̂p� � u + �p

= E�2u + Por � ��̂p � ẑ� , �7�

� · u = 0, �8�

where the Ekman number, E=� /�ro
2, provides the measure

of relative importance between the typical viscous force and
the Coriolis force, and the Poincaré number, Po= � ��p� /�,
quantifies the strength of the precessional forcing. Positive
Po corresponds to the case of prograde precession while
Po�0 indicates retrograde precession. In the mantle frame,

the dimensionless precession vector �̂p is given by
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�̂p = sin ��r̂ sin 	 cos�
 + t� + �̂ cos 	 cos�
 + t�

− �̂ sin�
 + t�� + ẑ cos � . �9�

The precessing flow on the bounding surface S of the spheri-
cal container is at rest, which requires

r̂ · u = r̂ � u = 0. �10�

The problem defined by Eqs. �7� and �8� subject to the
boundary conditions �10� will be solved asymptotically for
an arbitrarily small but fixed E with sufficiently small Po.

III. ASYMPTOTIC ANALYSIS IN THE MANTLE
FRAME

In all that follows, u and p are understood to mean the
flow velocity and pressure seen in the mantle frame of ref-
erence. For weakly precessing flows, we may neglect the
nonlinear term u ·�u in Eq. �7� �see further discussion re-
garding the nonlinear effect at the end of this section� by
considering the linearized equations

�u

�t
+ 2ẑ � u + �p = E�2u + Po�r � ��̂p � ẑ� − 2�̂p � u� ,

�11�

� · u = 0. �12�

Our asymptotic analysis will not make any prior assumption
about the structure of the flow. It will be based on the fol-
lowing physical and mathematical observations. First, the
analytical solution to Eqs. �11� and �12� in the limit Po=0
and E=0 is available,21 which provides the necessary frame-
work for constructing the leading-order solution to the inte-
rior precessing flow in the mantle frame. Naturally, an
asymptotic problem describing weakly precessing flows for
�Po��1 and E�1 may be regarded as a small perturbation
to the leading-order solution at Po=0 and E=0, forming a
mathematically tractable asymptotic problem. Second, the

Poincaré forcing, Por� ��̂p� ẑ�, is diurnal and equatorially
antisymmetric in the mantle frame. Consequently, only the
spherical inertial modes with the same symmetry are re-
quired in the asymptotic analysis. Finally, if we treat the
Poincaré forcing in Eq. �11� the similar way as we treat the
buoyancy force in convection, the asymptotic method used in
convection by Zhang and Liao22 may be modified to solve
the precession problem.

Those observations lead to an asymptotic expansion of
the spherical precessing flow u for �Po��1 and E�1 in the
mantle frame

u = �
mnk

Amnk��umnk + ûmnk� + �ũmnk + �r̂ · û̃mnk�r̂�	eit,

�13�

where i=
−1, Amnk are complex coefficients to be deter-
mined, and the triple index—m is the azimuthal wavenumber
and n and k represent roughly the axial and radial wavenum-
bers, respectively—is adopted to specify a spherical inertial
mode umkn that satisfies

i2mnkumnk + 2ẑ � umnk + �pmnk = 0, �14�

� · umnk = 0, �15�

where mnk is the half-frequency of the mode with �mnk�
�1, subject to the inviscid boundary condition r̂ ·umnk=0 on
S. In the asymptotic expansion �13�, viscous action on each
inertial mode umnk induces a thin viscous boundary layer on
S with major tangential component ũmnk �i.e., r̂ · ũmnk=0� and
small normal component n̂ · û̃mnk. By producing a normal
mass flux from, or sucking the interior fluid into, the thin
boundary layer, the viscous effect drives the secondary inte-
rior flow ûmnk and communicates to the interior fluid. Here a
precessing flow �13� u for � Po�1 and E�1 is similar to
that of convective flow23 in which the velocity is decom-
posed into viscous boundary layers and interior inviscid in-
ertial waves. The pressure p can be expanded in a similar
way. It should be pointed out that the asymptotic expansion
�13� may be used to represent the spatial structure of any
physically acceptable flow satisfying Eq. �12� in rapidly ro-
tating fluid spheres. In other words, no prior assumptions
about the spatial-temporal structure of the solution are made
in the asymptotic analysis.

The spatial symmetry of the Poincaré force, r� ��̂p

� ẑ�, implies that the asymptotic expansion �13� needs only
the spherical inertial modes, �pmnk ,umnk�, obeying

�pmnk, r̂ · umnk,�̂ · umnk,�̂ · umnk��r,	,
�

= �− pmnk,− r̂ · umnk,�̂ · umnk,− �̂ · umnk��r,� − 	,
� .

It follows that the explicit analytical expressions for umnk and
pmnk required in Eq. �13� are given by

pmnk = �
i=0

k

�
j=0

k−i

Cmkij
2i�1 − 2� jrm+2�i+j�+1

�sin2j+m 	 cos2i+1 	eim
, �16�

r̂ · umnk = −
i

2�
i=0

k

�
j=0

k−i

Cmkijr
m+2�i+j�

��mnk
2 �m + 2j� + mmnk − �2i + 1��1 − mnk

2 ��

�mnk
2i−1�1 − mnk

2 � j−1sinm+2j 	 cos2i+1 	eim
,

�17�

�̂ · umnk = −
i

2�
i=0

k

�
j=0

k−i

Cmkijr
m+2�i+j���mnk

2 �m + 2j� + mmnk�

�cos2 	 + �2i + 1��1 − mnk
2 �sin2 		

�mnk
2i−1�1 − mnk

2 � j−1sinm+2j−1 	 cos2i 	eim
,

�18�
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�̂ · umnk =
1

2�
i=0

k

�
j=0

k−i

Cmkijr
m+2�i+j�mnk

2i ��m + 2j� + mmnk�

��1 − mnk
2 � j−1sinm+2j−1 	 cos2i+1 	eim
, �19�

where m�0, k=0,1 ,2 , . . ., and n=1,2 , . . . , �2k+1�, Cmkij is
defined as

Cmkij =
�− 1�i+j�2�m + k + i + j� + 1�!!

2 j+1�2i + 1�!!�k − i − j�!i!j!�m + j�!

while the half frequencies, mnk, are solutions of

0 = �
j=0

k
�− 1� j�2�2k + m − j + 1��!

j!�2�k − j� + 1�!�2k + m − j + 1�!
mnk

2�k−j�

���2k − 2j + m + 1�mnk − �2k − 2j + 1�� . �20�

Here, for each given k�0, the 2k+1 distinct real solutions of
Eq. �20� can be arranged according to their size

0 � �m1k� � �m2k� � �m3k�, . . . , � �mnk� � . . .

with mnk representing the nth smallest absolute solution of
Eq. �20� and 1�n� �2k+1�. For example, Eq. �20� yields
110=1 /2 when m=1, n=1, and k=0, corresponding to the
simplest inertial mode �p110,u110�.

Consider first the solution for the thin viscous boundary
layer on S. On substitution of Eq. �13� into Eqs. �11� and
�12�, the leading-order solution of the viscous boundary layer
is described by the equations

�
mnk

Amnk�iũmnk + 2ẑ � ũmnk − r̂E−1/2� � p̃mnk

��
 −

�2ũmnk

��2 � = 0,

�21�

�

����mnk

Amnkr̂ · û̃mnk = E1/2r̂ · ��r̂ � ��
mnk

Amnkũmnk� , �22�

where we have introduced a stretched boundary-layer vari-
able � for which r̂ ·�=−E−1/2� /�� with �=0 at S while �=�
defines the outer edge of the thin boundary layer. It is math-
ematically convenient to derive a fourth-order differential
equation by applying the operators r̂� and r̂� r̂� to Eq.
�21�, and then combining the two resulting equations into a
single equation

�� �2

��2 − i2

+ 4�ẑ · r̂�2���
mnk

Amnkũmnk = 0 �23�

which is solved subject to the four boundary conditions

��
mnk

Amnkũmnk
�=0

= − ��
mnk

Amnkumnk
r=1

, �24�

��
mnk

Amnk
�2ũmnk

��2 
�=0

= − �
mnk

Amnk�iumnk + 2�ẑ · r̂�r̂umnk�r=1,

�25�

��
mnk

Amnkũmnk
�=�

= 0, �26�

��
mnk

Amnk
�2ũmnk

��2 
�=�

= 0. �27�

Here the explicit expression for umnk is given by Eqs.
�17�–�19�. The fourth-order Eq. �23�, together with the four
boundary conditions �24�–�27�, can be solved to give a
boundary-layer solution in which the coefficients Amnk re-
main undetermined.

Consider now the interior solution whose asymptotic
match to the boundary-layer solution would determine the
values of Amnk. Substituting Eq. �13� into Eq. �11�, multiply-
ing the resulting equation by umnk

� , the complex conjugate of
umnk, making use of mass conservation �12� and then inte-
grating over the sphere, we obtain the solvability condition
for the interior problem

i�1 − 2mnk�Amnk�
0

2� �
0

� �
0

1

�umnk�2r2 sin 	r2drd	d
 + E1/2 �
m�n�k�

Am�n�k��
0

2� �
0

�

�pmnk
� �r=1

���
0

�

r̂ · � � �r̂ � ũm�n�k��d��sin 	d	d


= Po�
0

2� �
0

� �
0

1

umnk
� · �r � ��̂p � ẑ��r2 sin 	drd	d
 − 2Po �

m�n�k�

Am�n�k�

��
0

2� �
0

� �
0

1

umnk
� · ��̂p � um�n�k��r

2 sin 	drd	d
 , �28�
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where pmnk
� denotes the complex conjugate of pmnk and the

indices, m, n, and k, take all permissible values. In deriving
Eq. �28�, we have used the fact21 that

�
0

2� �
0

� �
0

1

�umnk
� · �2umnk�r2 sin 	 drd	d
 � 0.

In the solvability condition �28�, we notice, by performing
direct integration using the expressions �9� and �17�–�19�,
that

�
0

2� �
0

� �
0

1

umnk
� · �r � ��̂p � ẑ��r2 sin 	r2drd	d
 = 0

for all indices m, n, and k except for m=1, n=1, and k=0.
This implies that the solvability system �28� can be reduced
to

Amnk = 0, except for m = 1, n = 1, k = 0

with A110 given by the equation

E1/2A110�
0

2� �
0

�

�p110
� �r=1

���
0

�

r̂ · � � �r̂ � ũ110�d��sin 	d	d


= Po�
0

2� �
0

� �
0

1

u110
� · �r � ��̂p � ẑ��r2 sin 	drd	d


+ iPo cos �A110�
0

2� �
0

� �
0

1

�u110�2r2 sin 	drd	d
 .

�29�

Note that the O�Po sin �� terms do not make contribution to
the primary solution with the azimuthal wavenumber m=1 at
leading order. We have thus established that there exists only
one inertial mode in the mantle frame of reference, u110, that
can be excited and maintained by the Poincaré forcing via
the viscous coupling.

In Eq. �29�, the pressure p110 and the velocity u110 can be
obtained simply by setting m=1, n=1, and k=0, together
with 110=1 /2, in Eqs. �16�–�19�. Though the boundary-
layer solution, A110ũ110, can be readily derived by solving
Eq. �23� subject to the conditions �24�–�27� for a single in-
ertial mode u110, the boundary-layer mass flux in Eq. �29�
needs careful manipulation. It can be shown that the mass
flux takes the form

�A110�
0

�

r̂ · � � �r̂ � ũ110�d��
= A110 �

3
2

8 � �

�x
�T1�x�
1 − x2� +

iT2�x�

1 − x2�ei
,

where x=cos 	 and

T1�x� =
ix


�1 + 2x�
+

x�1 + 2x�

�1 + 2x�3

+
ix


�1 − 2x�
+

x�1 − 2x�

�1 − 2x�3

,

T2�x� =
− x


�1 + 2x�
+

ix�1 + 2x�

�1 + 2x�3

+
x


�1 − 2x�
−

ix�1 − 2x�

�1 − 2x�3

.

We are now in a position to determine, by carrying out the
relevant integrations, each term in the solvability condition
�29�

E1/2�
0

2� �
0

�

�p110
� �r=1�A110�

0

�

r̂ · � � �r̂ � ũ110�d��
�sin 	d	d


=
E1/2A1109�
2

70
��19 + 9
3� − i�19 − 9
3�� ,

Po�
0

2� �
0

� �
0

1

u110
� · �r � ��̂p � ẑ�� � r2 sin 	drd	d


=
iPo sin �8�

5
,

iPo cos �A110�
0

2� �
0

� �
0

1

�u110�2r2 sin 	drd	d
 ,

=
iPo cos �A11012�

5
.

With the above results, A110 can be readily determined from
Eq. �29�. Substitution of all Amnk, as well as ũ110 and u110,
into the asymptotic expansion �13� yields the leading-order
time-dependent asymptotic solution in the mantle frame of
reference, describing the weakly precessing flows satisfying
the nonslip boundary condition

u =
iPo sin ��i��−E1/2 + Po cos �� + �+E1/2�

2���−E1/2 + Po cos ��2 + ��+E1/2�2�

� �2r��̂ cos 	 − i�̂� + �1 − cos 	��i�̂ + �̂�e�+E−1/2�1−r�

+ �1 + cos 	��i�̂ − �̂�e�−E−1/2�1−r��ei�
+t�, �30�

where the real part of the expression is taken and

�+ =
3

56
�19
2 + 9
6� ,

�− =
3

56
�19
2 − 9
6� ,

�+ = −

2

2
�1 +

i�1 + 2 cos 	�
�1 + 2 cos 	� ��1 + 2 cos 	�1/2,

�− = −

2

2
�1 +

i�1 − 2 cos 	�
�1 − 2 cos 	� ��1 − 2 cos 	�1/2.

Evidently, the analytical expression �30� represents a retro-
gradely traveling wave of period 2�. Far away from the
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viscous boundary layer where �E−1/2�1−r���1, Eq. �30� sug-
gests that the interior flow is in the form of an inertial wave
traveling azimuthally and retrogradely. In Eq. �30�, there ex-
ist two critical colatitudes, 	c=� /3 and 	c=2� /3, at which
the boundary-layer solution breaks down as it thickens to
O�E2/5�, as discussed by Roberts and Stewartson.12 However,
it is generally believed, and has been demonstrated, that the
effect of the singularities is weak and insignificant since the
mass flux from the critical regions is much smaller than that
from the rest of the boundary layer.12,13,15,16 Since the non-
linear effect has been neglected in the analysis, the expres-
sion �30� is strictly correct if �Po sin ���O�E1/2�.

The asymptotic solution �30� in the mantle frame, de-
spite its relative simplicity, can be compared directly to fully
nonlinear numerical simulations performed at small but fixed
E for sufficiently small Po based on a finite element
method.24 Figure 1 �the dashed lines� shows kinetic energies
of the precessing flows per volume, Ekin, defined as

Ekin =
1

2
� 3

4�
�

0

2� �
0

� �
0

1

�u�r,	,
��2r2 sin 	drd	d
 ,

where the flow u is given by the expression �30�, for two
different values of E as a function of Po. Numerical solu-
tions �the solid lines� are also displayed in the same figure
for the purpose of comparison. It should be noted that the
dependence of the kinetic energies Ekin on Po for a fixed E
is, generally speaking, not linear, which is clearly shown in
the analytical expression �30� and reflected in Fig. 1�b�. In
order to illustrate the spatial structure of the precessing flow,
the flow vectors in the mantle frame of reference on a whole
spherical surface just below the container’s envelope at
r=0.85 are plotted in the drifting frame of the traveling wave
in Fig. 2�a�, showing the flow structure obtained from Eq.
�30� for Po=−10−4, E=10−3, and �=23.5°. Moreover, con-
tours of u	 for the precessing flow at the equatorial plane are
depicted in Fig. 2�c�. They should be compared to the corre-
sponding nonlinear numerical solution obtained at exactly
the same parameters which are shown in Figs. 2�b� and 2�d�.

It should be pointed out that, because a special property
of the mainstream flow u—which satisfies u ·�u=�� far
away from the boundary layer, where � is a potential—the
nonlinear effect occurs only in the viscous boundary layer at
next order. This explains why a reasonable agreement be-
tween the expression �30� and fully nonlinear numerical
simulations is achieved beyond the limit of the linear
analysis.

IV. SUMMARY AND REMARKS

We have studied, through both asymptotic analysis and
numerical simulation, precessionally driven flows confined
in a fluid sphere rotating rapidly with angular velocity � that
itself precesses slowly about an axis fixed in an inertial
frame. The precessionally driven flow in the sphere is mainly
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(a)

(b)

FIG. 1. Kinetic energies, Ekin, of the retrogradely precessing flow �Po�0�
based on the analytical expression �30� and from the three-dimensional di-
rect numerical simulation, plotted as a function of Po for �a� E=10−3 and
�b� E=10−4 with �=23.5°.

(b)

(a) (c)

(d)

FIG. 2. Flow vectors on the spherical surface at r=0.85 �the Mollweide
equal area projection� in the drifting frame of the wave: �a� from the
asymptotic solution �30� and �b� from the corresponding numerical simula-
tion. Contours of the velocity component u	 at the equatorial plane in the
drifting frame: �c� from the asymptotic solution �30� and �d� from the cor-
responding numerical simulation. In �c� and �d�, dashed contours denote
u	�0 while for solid contours u	�0. The parameters for both the
asymptotic and numerical solutions are Po=−10−4 and E=10−3 with
�=23.5°.
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characterized by two parameters: the Ekman number E and
the Poincaré number Po. When E�1 and �Po� is sufficiently
small, the precessing flow is characterized by an inertial
wave moving retrogradely. The analytical expression �30� for
the weakly precessing flow in the mantle frame is checked
with fully nonlinear numerical simulation using the element-
by-element �EBE� finite element method. We have focused
on the spherical cavity in that the container is only viscously
coupled with the fluid. An asymptotic analysis for a spheroi-
dal cavity of arbitrary eccentricity, where both viscous and
topographic couplings take place, is much more
complicated—because general spheroidal coordinates must
be employed in the analysis—and will be carried out in the
future.

In comparison to the previous theoretical studies, the
mantle frame of reference is adopted for the first time in the
asymptotic analysis of spherical precessing flows. The ana-
lytical expression �30� represents the first asymptotic solu-
tion of the precessing flow in literature that is in the mantle
frame and satisfies the nonslip boundary condition. Although
the expression �30� may be, in principle, obtainable by trans-
forming the rigid-body-rotation solution6,12,13 to the mantle
frame, our theoretical approach is different from the previous
studies. In the asymptotic expansion �13� and the subsequent
analysis, we do not make any prior assumption about the
precessing flow. It is the general solvability condition �28�
that selects/determines the spatial structure of the time-
dependent precessing flow in the mantle frame. In this re-
spect, our asymptotic analysis—a selection process via the
general solvability condition �28� from a complete spectrum
of spherical inertial modes—underpins the nature of preces-
sionally driven flows in a more physical way.

The analytical expression �30� is also geophysically im-
portant and practically useful. It is well known that the ex-
tremely small value of the Ekman number, a consequence of
the Earth’s rapid rotation and the small viscosity in the
Earth’s liquid core, causes severe difficulties in numerical
modeling of core dynamics. Even with modern powerful su-
percomputers, it is still difficult to achieve the geophysically
realistic value, which is O�10−9��E�O�10−15�. Our analyti-
cal expression �30� is valid for an arbitrarily small Ekman
number and, thus, can be employed to understand some as-
pects of the Earth’s core dynamics for geophysically realistic
E. A geophysically important question is whether the preces-
sionally driven flow in the Earth’s fluid core has a suffi-
ciently large amplitude O�10−4 m /s�. Define the dimen-
sional average speed, U, of the precessing flow as

U = � 1

V
�

V

�u�2dV1/2

�ro�� ,

where u is given by Eq. �30�, V=4� /3, ro=3.485�106 m,
�=7.27�10−5 /s. By using Eq. �30�, we obtain U at leading
order

U = � 2�Po sin ��2/5
��−E1/2 + Po cos ��2 + ��+E1/2�2�1/2

�ro�� .

Taking Po=10−7, �=23.5°, appropriate for the Earth, we
find that U=2.43�10−2 m /s for E=10−8 and U=7.67

�10−2 m /s for E=10−9. In other words, the Earth’s preces-
sion via the viscous coupling can drive geophysically signifi-
cant flows in its fluid core. Lorenzani and Tilgner25 arrived at
a similar conclusion but with a smaller amplitude of the flow.
The difference may be attributable to a finite ellipticity,
which changes the resonance condition of spherical inertial
modes, adopted in their estimate. It is also important to point
out that, owing to the diurnal period of precessionally driven
flows, the geomagnetic variation on this timescale would be
screened out by the lower mantle.

The essential theoretical idea used in this study is, al-
though differing in detail, largely similar to that developed
for the asymptotic solution of thermal convection in rapidly
rotating fluid spheres.26 Despite the fact that the mathemati-
cal analysis of the precessing flow in the mantle frame of
reference is more complicated and lengthy, it offers a highly
desirable potentiality that we may unify the mathematical
theories of buoyancy-driven convection and precessionally
driven flows. This unified approach is particularly significant
for constructing a planetary dynamo model in that both driv-
ing mechanisms—convection and precession—are believed
to be energetically important. An indication from this work is
that a unified asymptotic theory for both convection and pre-
cession in the same frame of reference is within our reach.
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