
J. Fluid Mech. (2008), vol. 610, pp. 425–443. c© 2008 Cambridge University Press

doi:10.1017/S0022112008002711 Printed in the United Kingdom

425

On the initial-value problem in a rotating
circular cylinder

KEKE ZHANG1 AND XINHAO LIAO2

1Department of Mathematical Sciences, University of Exeter, Exeter, EX4 4QE, UK
2Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China

(Received 9 May 2007 and in revised form 5 June 2008)

The initial-value problem in rapidly rotating circular cylinders is revisited. Four
different but related analyses are carried out: (i) we derive a modified asymptotic
expression for the viscous decay factors valid for the inertial modes of a broad
range of frequencies that are required for an asymptotic solution of the initial
value problem at an arbitrarily small but fixed Ekman number; (ii) we perform a
fully numerical analysis to estimate the viscous decay factors, showing satisfactory
quantitative agreement between the modified asymptotic expression and the fuller
numerics; (iii) we derive a modified time-dependent asymptotic solution of the initial
value problem valid for an arbitrarily small but fixed Ekman number and (iv) we
perform fully numerical simulations for the initial value problem at a small Ekman
number, showing satisfactory quantitative agreement between the modified time-
dependent solution and the numerical simulations.

1. Introduction
Motivated by the wish to understand the fundamental dynamics of rotating fluids

in planetary interiors and atmospheres, flows in rotating fluid-filled containers have
been studied extensively for a very long time (for example Kelvin 1880; Greenspan
1964; Kudlick 1966; Wedemeyer 1966; Greenspan 1968; Malkus 1989; Hollerbach
& Kerswell 1995; Kerswell & Barenghi 1995; Kerswell 1999). Motions in contained
rotating fluids can be largely divided into two different categories: unforced initial-
value problems and forced problems. The initial-value problem describes how an
initial state of the prescribed fluid motion, affected by both the viscous dissipation
and rotation, decays over the time scale O(E−1/2), where the Ekman number E is
asymptotically small, toward a state of rigid-body rotation, the natural final state of
a uniformly rotating viscous fluid (see, for example, Greenspan 1964; Kudlick 1966;
Greenspan 1968). This paper is primarily concerned with asymptotic and numerical
solutions of the initial-value problem in a rapidly rotating circular cylinder with an
arbitrarily small but fixed E subject to any physically acceptable initial condition.
Since it is difficult to accurately measure time-dependent solutions of the initial value
problem in experimental studies in rapidly rotating systems (see, for example, Fultz
1959; Malkus 1989; Aldridge & Stergiopoulos 1991; Manasseh 1992), asymptotic
solutions of the initial-value problem in rapidly rotating systems can only be checked
by fully numerical simulations of the same problem.

The analysis of an asymptotic time-dependent solution of the initial-value problem
in a rotating cylinder consists of two major parts (see, for example, Greenspan
1968): (i) derive the viscous decay factors for given inertial modes and (ii) obtain the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/12824917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


426 K. Zhang and X. Liao

asymptotic time-dependent solution on the basis of the decay factors and the inertial
modes. A number of authors (for example Kudlick 1966; Wedemeyer 1966; Greenspan
1968; Kerswell & Barenghi 1995; Kerswell 1999) have carried out the first part of
the analysis. In an important study estimating the viscous decay rates for a rotating
circular cylinder, Kerswell & Barenghi (1995) compared the two existing asymptotic
results, obtained by Kudlick (1966) and Wedemeyer (1966) who treated the relevant
surface integral differently, with the numerically calculated values of the decay factors
for a number of inertial modes with frequencies ω = O(1). To understand the resonant
collapse observed in experiments (see, for example, Manasseh 1992), Kerswell (1999)
studied a triad resonance by considering a three-inertial-mode interaction in a rotating
circular cylinder. In the appendix of that paper, he calculated the viscous decay factor
for two inertial modes with frequencies ω = O(1), up to E = 10−8, in a rotating cylinder
with the stress-free condition at the top and bottom surface, showing that adding the
interior dissipation contribution is helpful in evaluating the viscous decay factor.

The second part of the analysis, deriving and checking asymptotic time-dependent
solutions of the initial-value problem subject to physically acceptable initial conditions,
has received relatively less attention. In this paper, we present a modified asymptotic
expression which proves more accurate at an arbitrarily small but fixed E compared
to Greenspan’s original asymptotic theory. An essential ingredient for this better
accuracy is the inclusion of inertial waves having a wide spectrum of frequencies
and wavelengths, which contribute at the next order in the expansion if the spatial
scale of the initial flow is O(1). It turns out that these higher-order terms are
surprisingly significant at the small but finite E commonly considered in experiments
and numerical computations. To derive this modified expression, we have to evaluate
the viscous decay factors not only for the fast oscillation modes with ω = O(1) but
also the slow oscillation modes with, for example, ω = O(E1/5) or ω = O(E1/3). It
follows that we require an analytical expression of the viscous decay factors that is
valid for a broad range of inertial modes, the detail of which will be discussed further
in § 4. In contrast to the first part of the analysis, a comparison between asymptotic
solutions of the initial-value problem and the corresponding numerical solutions has
not been carried out for a rapidly rotating fluid-filled cylinder.

We revisit the initial-value problem in a rotating cylindrical container by carrying
out four different but related analyses. First, we derive a modified asymptotic
expression for the viscous decay factors that is valid for a broad range of inertial
modes required for an asymptotic solution of the initial-value problem at an arbitrarily
small but fixed E. We then perform a fully numerical analysis, showing satisfactory
quantitative agreement between the viscous decay factors given by the modified
asymptotic expression and the fuller numerics. With the asymptotic expression of
the decay factors valid for a broad range of inertial modes, we derive a modified
asymptotic solution of the initial-value problem in a rapidly rotating circular cylinder
for an arbitrarily small but fixed E subject to any physically acceptable initial
condition. Finally, we perform numerical simulations of the initial value problem,
showing satisfactory quantitative agreement between the modified time-dependent
asymptotic solution and numerical integration of the governing equations, over the
time scale O(E−1/2), starting from the same prescribed initial velocity distribution.

In what follows we shall begin by presenting the mathematical equations of the
problems in § 2. The existing asymptotic solution of the initial-value problem is
briefly discussed in § 3 and the modified asymptotic solution of the initial-value
problem is derived and presented in § 4. Numerical viscous decay factors and
numerical simulations of the initial-value problem, as well as their comparison with
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the asymptotic solutions, are discussed in § 5. The paper closes in § 6 with a short
summary and a few remarks.

2. Mathematical formulation
We consider an incompressible viscous fluid filling a circular cylinder of radius so

and length d , with aspect ratio Γ = so/d , rotating uniformly about its axis with a
constant vertical angular velocity Ω . At a particular time, t = 0, a physically acceptable
initial condition consisting of a small-Rossby-number fluid motion, U0, is imposed
within the rotating cylinder. The manner in which this initial state approaches the
final state of solid-body rotation is described by the following dimensionless equations
(Greenspan 1968) in the rotating reference frame:

∂u
∂t

+ 2 ẑ × u = − ∇p + E∇2u, (2.1)

∇ · u = 0, (2.2)

subject to the boundary conditions

u(s = Γ, φ, z) = u(s, φ, z = 0) = u(s, φ, z = 1) = 0 (2.3)

and the initial condition

u(s, φ, z, t = 0) = U0(s, φ, z), (2.4)

where ẑ denotes the unit vector parallel to the axis of rotation, u is the three-
dimensional velocity field, (us, uφ, uz) in cylindrical coordinates (s, φ, z) with the unit

vectors (ŝ, φ̂, ẑ) and with s = 0 representing the axis of rotation, and p is the reduced
pressure. In (2.1)–(2.2), the depth of the cylinder d is used as the length scale and
Ω−1 as the unit of time.

We shall discuss the existing asymptotic solution of this initial-value problem in § 3,
our modified asymptotic solution in § 4 and our fully numerical solution of the same
problem in § 5.

3. The existing solution of the initial-value problem
A general account of the asymptotic solution for the initial-value problem in

contained rotating systems for an asymptotically small Ekman number E was given
by Greenspan (1968). Prior to the discussion of our modified asymptotic solution
and fully numerical solution, it is useful to describe briefly the existing asymptotic
solution of the initial-value problem (Greenspan 1968).

The existing solution of the initial-value problem, when the initial state varies only
slightly from rigid-body rotation, is obtained by the following steps. First, the fluid
velocity u and other variables are expanded in half-powers of an asymptotically small
but fixed E (for example Greenspan 1968, equations 2.5.6 and 2.5.8),

u = uG +
∑
mnk

Amnkumnke
[iωmnkt−E1/2(dmnk−iωmnk1)t+···] + ũG +

∑
mnk

ũmnk

+ E1/2

(∑
mnk

umnk1 +
∑
mnk

ũmnk1 + · · ·
)

+ · · · , (3.1)

where E1/2 is an expansion parameter, uG denotes the single interior geostrophic
mode, umnk = O(1) represents an inviscid three-dimensional inertial mode described
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by the three indices (m, n, k) which are the three spatial wavenumbers in the azimuthal,
vertical and radial direction respectively (the explicit definition of (m, n, k) is given
below), ωmnk denotes the frequency of the inviscid inertial mode, ωmnk1 is the viscous
correction of the inviscid frequency, ũmnk =O(1), ũG = O(1) and ũmnk1 =O(1) are
the boundary corrections due to the effect of viscosity, dmnk denotes the scaled
viscous decay factor of the inertial mode, and umnk1 = O(1) represents the secondary
interior solution. The pressure field can be expanded in a similar way. Since the
single stationary geostrophic mode uG and its viscous correction ũG are extensively
discussed by Greenspan (1968) and since we are mainly concerned with oscillatory
inertial modes and the corresponding oscillatory boundary layers, we shall not discuss
the geostrophic mode further in detail.

Greenspan (1968, Section 2.5) gave a detailed description of the relevant physical
processes taking place in the initial value problem. Direct viscous action is confined
to a thin boundary layer at the container wall which produces a secondary interior
circulation. For a given initial velocity distribution, viscosity eliminates this on the
time scale O(E−1/2) and E1/2 emerges as a significant expansion parameter which is
used in the expansion (3.1) for the initial-value problem. He also noted, however, that
the effects of spatial and temporal non-uniformities obscure the correct form of the
expansion beyond the first viscous corrective O(E1/2) terms in the expansion (3.1).

The first step in solving the initial-value problem is to obtain the viscous decay
factor, dmnk, for a given inertial mode umnk for an arbitrarily small but fixed E. As
carefully explained by Greenspan (1968), after substitution of the expansion (3.1)
into the governing equations (2.1)–(2.2) and collection of the powers of E1/2, three
problems in the asymptotic sequence have to be solved in order to determine the
viscous decay factors dmnk (for example Greenspan 1968, p. 42, Section 2.5). The first
is for the zero-order interior solution of the inviscid motion, governed by the di-
mensionless equations (Greenspan 1968, p. 42, Section 2.5)

i2σmnkumnk + 2 ẑ × umnk = − ∇pmnk, (3.2)

∇ · umnk = 0, (3.3)

where ωmnk =2σmnk and |σmnk| < 1. Non-axisymmetric solutions of the first problem
can be written in the form

ŝ · umnk =
−i

2
(
1 − σ 2

mnk

)[
σmnkη

Γ
Jm−1

(
ηs

Γ

)
+

m(1 − σmnk)

s
Jm

(
ηs

Γ

)]
× cos(nπz) ei(mφ+2σmnkt), (3.4)

φ̂ · umnk =
1

2(1 − σ 2
mnk)

[
η

Γ
Jm−1

(
ηs

Γ

)
− m(1 − σmnk)

s
Jm

(
ηs

Γ

)]
× cos(nπz) ei(mφ+2σmnkt), (3.5)

ẑ · umnk =
−inπ

2σmnk

[
Jm

(
ηs

Γ

)]
sin(nπz) ei(mφ+2σmnkt), (3.6)

where Jm(x) denotes the standard Bessel function, m denotes the azimuthal
wavenumber assumed to be positive, n represents the vertical wavenumber and η

is associated with the radial wavenumber k and is determined by solutions of the
transcendental equation

dJm(η)

dη
+

mσmnk

η|σmnk|

[
1 +

(
η

Γ nπ

)2]1/2

Jm(η) = 0 (3.7)
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for given m and n. Solutions η to (3.7) can be arranged, with the aid of subscript
notion, according to their sizes

0 < ηmn1 < ηmn2 < ηmn3, . . . , < ηmnk < . . . ,

where ηmnk denotes the kth smallest solution to (3.7) for given n and m. The relation
between ηmnk and σmnk is given by

σmnk = ±
[
1 +

(
ηmnk

Γ nπ

)2]−1/2

. (3.8)

The axisymmetric solution (m = 0) can be expressed in a similar way (Greenspan
1968).

In the second problem, the viscous boundary layer correction is made to ensure that
the tangential velocity vanishes at the bounding surface of the container (Greenspan
1968, p. 42, Section 2.5)

iωmnkũmnk + 2 ẑ × ũmnk − n · ∇p̃mnk =
∂2ũmnk

∂ξ 2
, (3.9)

∂(n · ũmnk1)

∂ξ
= n · ∇ × (n × ũmnk), (3.10)

where ξ is a stretched boundary-layer coordinate and n denotes the normal vector
of the bounding surface of the fluid container. The third problem in the asymptotic
sequence after collecting the O(E1/2) terms, which determines the viscous decay
factors, is given by (Greenspan 1968, p. 43, Section 2.5)

iωmnkumnk1 + 2 ẑ × umnk1 + ∇pmnk1 = (iωmnk1 − dmnk) umnk, (3.11)

∇ · umkn1 = 0, (3.12)

which is an inhomogeneous boundary-value problem requiring a solvability condition.
After the first and second problems are solved subject to appropriate boundary
conditions, the viscous decay factors, dmnk, important parameters in the initial value
problem, can be determined by the solvability requirement for (3.11). It is shown that
the viscous decay factors are given by (Greenspan 1968, p. 57, 58, equations 2.9.12 or
2.9.13),

Dmnk = E1/2dmnk = −

⎛
⎜⎜⎝

∫
S

p∗
mnk (n · ũmnk1) dS∫
V

|umnk|2dV

⎞
⎟⎟⎠ E1/2, (3.13)

where Dmnk is the unscaled viscous decay factor, p∗
mnk denotes the complex conjugate

of the pressure field pmnk,
∫

V
represents a volume integral over the fluid container and∫

S
represents a surface integral over the bounding surface of the container.
With the asymptotic formula for the viscous decay factors dmnk given by (3.13),

one can derive the general time-dependent solution of the initial-value problem. The
values of the coefficients Amnk in (3.1) are obtained by a straightforward integration
making use of the orthogonality relationship (Greenspan 1968, p. 59, equations 2.10.4)

Amnk =

∫
V

u∗
mnk · U0 dV∫

V

|umnk|2 dV

,
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where u∗
mnk denotes the complex conjugate of umnk. With the availability of the

mathematical expression for all inertial modes umkn (Greenspan 1968, p. 82), the
general time-dependent solution of the initial-value problem to leading approximation
is (Greenspan 1968, p. 58, equation 2.10.1)

u(r, t) =
∑
mnk

⎛
⎜⎜⎝

∫
V

u∗
mnk · U0 dV∫

V

|umnk|2 dV

⎞
⎟⎟⎠ umnke

(iωmnk−E1/2dmnk)t (3.14)

for the ensuing transient motion over the time scale O(E−1/2). For the purpose of
illustration without loss of essential physics, we have assumed an initial state of
the prescribed fluid motion, U0, that does not possess mean circulation so that the
single geostrophic mode can be disregarded. The existing asymptotic solution of the
initial-value problem is given by (3.14) and (3.13).

It was pointed out that each inertial mode, which is separable into an inviscid
component and a boundary-layer correction, breaks down when the effective modal
wavelength is of the order E1/2 (Greenspan 1968, p. 63 and 83). This implies that,
for a given small E, there will be a cutoff in the inertial modes included in (3.14):
the time scale O(E−1/2) corresponds to the cutoff frequency |ωmnk| =O(E1/2) while
the spatial scale O(E1/2) gives rise to the cutoff radial wavenumber k = O(E−1/2). It
follows that all the inertial modes having the range of frequencies

O(E1/2) < |ωmnk| � O(1), (3.15)

must be included in the asymptotic solution (3.14). Furthermore, the cutoff
wavenumber means that all the inertial modes in the range of wavenumbers

O(1) � k < O
(
E−1/2

)
, (3.16)

where k is the radial wavenumber provided that n= O(1) and m = O(1), must be
included in (3.14). Since the small frequency ωmnk and the large wavenumber k are
related by k ∼ ω−1

mnk (Greenspan 1968), we only need to consider the range of the inertial
modes restricted by (3.15). It should be also noticed that the time scale O(E−1/2)
valid for an asymptotic solution of the initial value problem is fully consistent with
the cutoff frequency and wavenumber of the asymptotic solution (3.14).

The existing asymptotic solution of the initial-value problem given by (3.14) is
computed for a prescribed initial velocity distribution at a fixed small E as a function
of time and is then compared with direct numerical simulations of the same problem,
which will be discussed in § 5.

4. A modified solution of the initial-value problem
We emphasize that (i) we are concerned with time-dependent solutions of the

initial-value problem over the time scale O(E−1/2), where E is arbitrarily small but
fixed, subject to any physically acceptable initial condition, and (ii) the value of E

determines the range of the inertial modes that must be included in an asymptotic
solution of the initial-value problem. More explicitly, all the inertial modes whose
frequencies ωmnk satisfy

|ωmnk| =O(Eβ) with 0 � β < 1
2
, (4.1)
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must be included in an asymptotic solution of the initial value problem. Note that
all the inertial modes defined by (4.1) have spatial scales larger than the cutoff scale
O(E1/2) and have temporal scales shorter than the cutoff scale O(E−1/2).

We make the following observation: the effects of spatial and temporal non-
uniformities obscure the form of the expansion even in the first viscous corrective
terms in an asymptotic solution of the initial-value problem. This is because, for an
inertial mode with β �= 0 in (4.1), such as β = 1/5, the thickness of the oscillatory
viscous boundary layer is not of the order E1/2 and the flux from the oscillatory
viscous boundary layer is not of the order E1/2. The fact that the boundary-layer
thickness and flux strongly depend on β suggests that we cannot take E1/2 as an
expansion parameter even for the first viscous corrective terms in an asymptotic
solution of the initial-value problem.

This observation indicates that the expansion (3.1) of the asymptotic solution for an
arbitrarily small but fixed E and the corresponding three problems of the asymptotic
sequence defined by (3.2)–(3.12) need to be modified, leading to the expansion

u =
∑
mnk

Amnkumnke
[iωmnkt−(Dmnk−iωmnk1)t] +

∑
mnk

ũmnk

+

(∑
mnk

umnk1 +
∑
mnk

ũmnk1

)
, (4.2)

where |umnk| =O(1), ũmnk = O(1), |umkn1| � 1 and |ũmnk1| � 1. Note that boundary-
layer solutions ũmnk are required because the interior inertial modes umnk given by
(3.4)–(3.6) do not satisfy the non-slip boundary condition. It follows that all the
corresponding boundary-layer corrections ũmnk must be included in the asymptotic
solution of the initial-value problem. In the expansion (4.2), we have again assumed
that the initial condition does not possess mean circulation,∫ 1

0

∫ 2π

0

φ̂ · U0(s, φ, z)s dφ dz = 0,

so that the single geostrophic mode does not appear.
It is worth noting that the axisymmetric (u0nk with m = 0) and non-axisymmetric

(umnk with m > 0) inertial modes require slightly different formulations in both the
asymptotic and numerical analysis. For the purpose of clarity, we shall present
the solutions for axisymmetric and non-axisymmetric modes separately. Substitution
of (4.2) into the governing equations (2.1)–(2.2) also yields three problems in the
asymptotic sequence. The first is the same as that defined by (3.2)–(3.3), describing
the inviscid axisymmetric inertial modes u0nk or non-axisymmetric inertial modes umnk

with half-frequencies σ0nk and σmnk. The second problem in the asymptotic sequence,
describing the oscillatory viscous boundary layer at the bounding surface of the
cylinder, is also the same as that for the existing solution. It is straightforward to
solve (3.9)–(3.10) to find ũmnk for the viscous boundary layer (see, for example, Kudlick
1966; Kerswell & Barenghi 1995).

The third problem in the asymptotic sequence, concerning the first viscous corrective
terms that determine the values of the viscous decay factors, is, according to the
modified expansion (4.2), given by

2iσmnkumnk1 + 2 ẑ × umnk1 + ∇pmnk1 = (2iσmnk1 − Dmnk) umnk + E∇2umnk, (4.3)

∇ · umnk1 = 0, (4.4)
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(m, n) k =1 k =2 k = 3 k = 4 k = 5 k =6

(0, 1) 3.810 × 10−1 2.196 × 10−1 1.518 × 10−1 1.161 × 10−1 9.542 × 10−2 8.023 × 10−2

(1, 1) 5.000 × 10−1 2.562 × 10−1 1.704 × 10−1 1.274 × 10−1 1.017 × 10−1 8.462 × 10−2

(1, 3) 8.878 × 10−1 6.446 × 10−1 4.749 × 10−1 3.689 × 10−1 2.996 × 10−1 2.514 × 10−1

(2, 1) 3.353 × 10−1 2.002 × 10−1 1.429 × 10−1 1.112 × 10−1 9.098 × 10−2 7.701 × 10−2

(2, 3) 7.659 × 10−1 5.480 × 10−1 4.135 × 10−1 3.288 × 10−1 2.718 × 10−1 2.312 × 10−1

Table 1. Several typical positive σmnk of inertial modes in a rotating cylinder
with the aspect ratio Γ = 1/1.9898.

where m � 0 and σmnk1 denotes the small viscous correction to the inviscid frequency,
which is of less significance. It is of importance to note that, in the framework of
the modified asymptotic expansion (4.2), the term E∇2umnk in (4.3), representing the
interior viscous dissipation, must be retained.

The inhomogeneous differential equation (4.3) requires a solvability condition whose
real part yields the modified asymptotic expression for the viscous decay factors Dmnk.
For the axisymmetric inertial oscillation modes with m =0, we obtain from the
solvability condition that

D0nk = (n2π2)

(
E1/2

σ0nk

)2

+
[(

1 − σ 2
0nk

)
E

]1/2

×
[

|σ0nk|1/2
Γ

(
1 − σ 2

0nk

)1/2
+ (1 − σ0nk)

3/2 + (1 + σ0nk)
3/2

]
, (4.5)

where σ0nk are the half-frequencies of axisymmetric inertial modes in the range
O(E1/2) < σ0nk � O(1) required for an asymptotic solution of the initial-value problem.
Several positive half-frequencies for both axisymmetric and non-axisymmetric modes
are shown in table 1 in a rotating cylinder with aspect ratio Γ = 1/1.9898. We choose
this particular Γ because it was used in previous studies (for example Kerswell &
Barenghi 1995), making the comparison of our analysis with previous work easier.

In the modified asymptotic expression (4.5), the viscous contribution to the viscous
decay factors D0nk comprises three different parts if we assume that n= O(1) and
Γ =O(1):

(i) from the horizontal boundary layers ∼ [(1 − σ 2
0nk)E]1/2;

(ii) from the vertical boundary layer ∼ (|σ0nk|E)1/2(1 − σ 2
0nk);

(iii) from the interior flow ∼ (E1/2

σ0nk
)2.

We examine three typical cases of β for the purpose of illustration:
(a) Consider the inertial modes with β =0 in (4.1), i.e. σ0nk = O(1), which are
required for an asymptotic solution of the initial-value problem. The contribution
from the interior is subdominant to the Ekman boundary contribution. In this case,
the existing formula (3.13) gives a correct result provided that E is sufficiently small
(Kerswell 1999).
(b) Consider the inertial modes with β =1/5 in (4.1), i.e. σ0nk = O(E1/5), which are
also required for the solution of the initial-value problem. The contribution from part
(iii), which is neglected in the existing formula (3.13), is O(E3/5) while the contribution
from the vertical boundary layer is also O(E3/5). In this case, the existing formula
(3.13) cannot give a correct result regardless of how small E is.
(c) Consider the inertial modes with β = 1/3 in (4.1), i.e. σ0nk = O(E1/3), which are
also needed for the solution of the initial-value problem. The contribution from part
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(iii) is O(E1/3) while the contribution from the horizontal boundary layer is O(E1/2)
and the contribution from the vertical boundary layer is O(E2/3). In this case, the
existing formula (3.13) again cannot yield a correct result regardless of how small
E is.

Similarly, the solvability condition for the inhomogeneous perturbation equation
(4.3) gives rise to a modified asymptotic expression for the viscous decay factors, Dmnk,
for all the non-axisymmetric inertial modes,

Dmnk = (n2π2)

(
E1/2

σmnk

)2

+

[
M2/Γ

(nπΓ )2 + m (m − σmnk)

] [
|σmnk|

(
1 − σ 2

mnk

)2
E

]1/2

+

[
(1 − σmnk)

1/2
[
(1 − σmnk) M2 − 2mσmnk

]
(nπΓ )2 + m (m − σmnk)

] [(
1 − σ 2

mnk

)
E

]1/2

+

[
(1 + σmnk)

1/2
[
(1 + σmnk) M2 − 2mσmnk

]
(nπΓ )2 + m (m − σmnk)

] [(
1 − σ 2

mnk

)
E

]1/2
, (4.6)

where m > 0 and M2 = m2 + n2π2Γ 2. With the availability of the viscous decay rates,
given by (4.5) and (4.6), a modified asymptotic solution of the initial value problem
in a rapidly rotating cylinder is given by

u(r, t) =
∑
mnk

⎛
⎜⎜⎝

∫
V

u∗
mnk · U0 dV∫

V

|umnk|2 dV

⎞
⎟⎟⎠ umnke(

2iσmnkt−Dmnkt), (4.7)

which, similar to (3.14), should include all the inertial modes whose frequencies satisfy
(4.1).

The modified asymptotic solution of the initial-value problem as a function of time,
given by (4.6) and (4.7), is computed for a prescribed initial condition for a small
Ekman number and is then compared with direct numerical simulations of the same
problem, which will be discussed in § 5.

5. Numerical analysis: comparison with the asymptotic results
As pointed out by Kerswell & Barenghi (1995), the accuracy of the asymptotic

analysis needs to be verified by independent fully numerical analysis because of the
difficulties in experimental studies of rapidly rotating systems (see, for example, Gans
1970; Aurnou & Olson 2001). We shall first consider the numerical estimate of the
viscous decay factors, an eigenvalue problem, and then perform direct numerical
simulations of the initial value problem. In the numerical analysis, axisymmetric and
non-axisymmetric solutions are treated separately.

For an axisymmetric solution, a velocity vector satisfying equation (2.2) in
cylindrical geometry can be expressed in the form

u = − ∂Ψ̄

∂z
ŝ + Φ̄φ̂ +

1

s

∂(sΨ̄ )

∂s
ẑ. (5.1)

In terms of Ψ̄ and Φ̄ , the no-slip velocity condition on the sidewall becomes

Ψ̄ =
∂Ψ̄

∂s
= Φ̄ =0 at s = Γ, (5.2)
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while the non-slip velocity condition on the top and bottom of the cylinder is imposed
by

Ψ̄ =
∂Ψ̄

∂z
= Φ̄ = 0 at z = 0, 1. (5.3)

Making use of the expression (5.1) and applying φ̂ · and φ̂ · ∇× onto (2.1), we derive
two independent scalar equations for the two eigenvalues, the half-frequency σ0nk and
the viscous decay factor D0nk of an axisymmetric inertial mode,

(2iσ0nk − D0nk) Φ̄ − 2
∂Ψ̄

∂z
= E

(
∂2Φ̄

∂z2
+

∂2Φ̄

∂s2
+

1

s

∂Φ̄

∂s
− Φ̄

s2

)
, (5.4)

(2iσ0nk − D0nk)

(
∂2Ψ̄

∂z2
+

∂2Ψ̄

∂s2
+

1

s

∂Ψ̄

∂s
− Ψ̄

s2

)
+ 2

∂Φ̄

∂z

= E

(
∂2

∂z2
+

∂2

∂s2
+

1

s

∂

∂s
− 1

s2

)2

Ψ̄ . (5.5)

The problem is solved numerically by using the Galerkin method in which the
potential fields, Φ̄ and Ψ̄ , are expanded in terms of the standard Chebyshev functions
Tj (x)

Ψ̄ = s(1 − ẑ)2(1 − ẑ2)2

[
J∑

j =0

L∑
l =0

Ψ̄ nk
jl Tj ( ẑ) Tl( ẑ)

]
e(i2σ0nk−D0nk)t ,

Φ̄ = s(1 − ẑ)(1 − ẑ2)

[
J∑

j =0

L∑
l =0

Ψ̄ nk
jl Tj ( ẑ) Tl( ẑ)

]
e(i2σ0nk−D0nk)t ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.6)

where Ψ̄ nk
jl and Φ̄nk

jl are complex coefficients which are independent of time, ẑ =2z −1

and ŝ =2s/Γ − 1, and the factors s and (1 − ŝ)2 are imposed so that the expansions
are regular at the rotation axis s = 0 and the boundary conditions are satisfied
automatically.

For the numerical analysis of non-axisymmetric modes, the velocity vector u
satisfying equation (2.2) in cylindrical geometry can be expressed in terms of two
scalar potentials Ψ and Φ (Marqués 1990)

u =
1

s

∂Ψ

∂φ
ŝ +

(
∂Φ

∂z
− ∂Ψ

∂s

)
φ̂ − 1

s

∂Φ

∂φ
ẑ. (5.7)

An important advantage of using (5.7) is that the two scalar potentials are decoupled
in the velocity boundary condition on the whole bounding surface of the cylinder. In
terms of Ψ and Φ , the non-slip velocity condition on the sidewall is imposed by

Ψ =
∂Ψ

∂s
= Φ = 0 at s = Γ (5.8)

while the non-slip velocity condition on the top and bottom becomes

Ψ =
∂Φ

∂z
= Φ =0 at z = 0, 1. (5.9)

Making use of the expression (5.7) and applying ẑ · ∇× and ŝ · ∇× onto (2.1), we
derive two independent scalar equations for the two eigenvalues, the half frequency
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J L (D231, σ231) for k =1 (D236, σ236) for k =6

20 20 (8.483 × 10−3, 0.7669) (2.315 × 10−2, 0.2308)
22 22 (8.830 × 10−3, 0.7669) (2.373 × 10−2, 0.2307)
24 24 (8.924 × 10−3, 0.7670) (2.431 × 10−2, 0.2307)
26 26 (8.830 × 10−3, 0.7670) (2.485 × 10−2, 0.2307)
28 28 (8.852 × 10−3, 0.7670) (2.530 × 10−2, 0.2308)
30 30 (8.835 × 10−3, 0.7670) (2.563 × 10−2, 0.2308)
32 32 (8.839 × 10−3, 0.7670) (2.583 × 10−2, 0.2309)
34 34 (8.848 × 10−3, 0.7670) (2.593 × 10−2, 0.2309)
36 36 (8.856 × 10−3, 0.7670) (2.596 × 10−2, 0.2309)
38 38 (8.860 × 10−3, 0.7670) (2.595 × 10−2, 0.2309)
40 40 (8.862 × 10−3, 0.7670) (2.592 × 10−2, 0.2309)

Table 2. Numerical convergence of the viscous decay rates and the half-frequency σmnk as a
function of the truncation parameters J and L for m= 2 and n= 3 with two different values
of k, for E = 10−5 and Γ = 1/1.9898.

σmnk and the decay factor Dmnk of a non-axisymmetric inertial mode,

(2iσmnk − Dmnk − E∇2)

[
1

s

∂

∂s

(
s
∂Φ

∂z

)
−

(
∇2 − ∂2

∂z2

)
Ψ

]
+

2

s

∂2Φ

∂z∂φ
=0, (5.10)

[
2iσmnk − Dmnk − E

(
∇2 +

2

s

∂

∂s
+

1

s2

)][
∂2Ψ

∂s∂z
−

(
∇2 − 1

s

∂

∂s
s

∂

∂s

)
Φ

]

− 2

s

∂2Ψ

∂z∂φ
− 2E

s

[
1

s

∂

∂s

(
s
∂2Φ

∂z2

)
−

(
∇2 − ∂2

∂z2

)
∂Ψ

∂z

]
= 0. (5.11)

The numerical solutions for Φ and Ψ are then expanded in the form

Ψ = sm (1 − ẑ)2
(
1 − ẑ2

) [
J∑

j = 0

L∑
l = 0

Ψ nk
mjlTj ( ẑ) Tl ( ẑ)

]
ei(2σmnkt+mφ)−Dmnkt ,

Φ = sm+1 (1 − ẑ)
(
1 − ẑ2

)2

[
J∑

j = 0

L∑
l = 0

Φnk
mjlTj ( ẑ) Tl ( ẑ)

]
ei(2σmnkt+mφ)−Dmnkt ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.12)

where Ψ nk
mjl and Φnk

mjl are complex coefficients independent of time, m � 1 and the

factors sm and s(m+1) are imposed for regularity of the solution at s = 0. Our numerical
analysis has been carefully checked with that given by Kerswell & Barenghi (1995).
Several examples indicating the behaviour of numerical convergence of the solution
are shown in table 2.

The primary purpose of our numerical analysis is to provide a valuable comparison
with the results of the asymptotic analysis which is only valid for small values of the
Ekman number E � 1. The main results of the numerical analysis for the viscous
decay factors, together with those from the asymptotic analysis, are shown in tables 3
and 4.

We first discuss the viscous decay factors for the axisymmetric modes with m =0.
Several typical values of the viscous decay factors are shown in table 3 for the
six inertial modes (m = 0, n =1, k = 1, . . . , 6) with E = 10−4 and E = 10−5. It is of
significance to notice that all the inertial modes shown in table 3 are needed in an
asymptotic solution of the initial-value problem for E � O(10−4). For the purpose



436 K. Zhang and X. Liao

E k =1 k =2 k = 3 k =4 k =5 k =6

(A) 10−4 3.001 × 10−2 2.874 × 10−2 2.755 × 10−2 2.670 × 10−2 2.607 × 10−2 2.558 × 10−2

(B) 10−4 3.681 × 10−2 4.921 × 10−2 6.951 × 10−2 9.797 × 10−2 1.345 × 10−1 1.800 × 10−1

(C) 10−4 3.767 × 10−2 5.042 × 10−2 7.142 × 10−2 1.011 × 10−1 1.393 × 10−1 1.857 × 10−1

(A) 10−5 9.489 × 10−3 9.088 × 10−3 8.711 × 10−3 8.442 × 10−3 8.243 × 10−3 8.090 × 10−3

(B) 10−5 1.017 × 10−2 1.114 × 10−2 1.291 × 10−2 1.557 × 10−2 1.908 × 10−2 2.342 × 10−2

(C) 10−5 1.028 × 10−2 1.130 × 10−2 1.310 × 10−2 1.581 × 10−2 1.937 × 10−2 2.378 × 10−2

Table 3. The viscous decay factor, D0nk , of the axisymmetric inertial modes with (m= 0, n= 1)
for various values of k at Γ = 1/1.9898: (A) calculated from the existing formula (3.13)
(Greenspan 1968, Equation 2.9.12 or 2.9.13), (B) computed from the modified asymptotic
expression (4.5) and (C) from the fuller numerics.

(m =1, n = 1) k =1 k = 2 k =3 k =4 k = 5 k =6

(A) 9.128 × 10−3 9.012 × 10−3 8.637 × 10−3 8.369 × 10−3 8.174 × 10−3 8.025 × 10−3

(B) 9.523 × 10−3 1.052 × 10−2 1.204 × 10−2 1.445 × 10−2 1.771 × 10−2 2.181 × 10−2

(C) 9.587 × 10−3 1.063 × 10−2 1.219 × 10−2 1.464 × 10−2 1.796 × 10−2 2.212 × 10−2

(m =1, n = 3) k =1 k = 2 k =3 k =4 k = 5 k =6

(A) 5.090 × 10−3 8.549 × 10−3 9.373 × 10−3 9.450 × 10−3 9.340 × 10−3 9.191 × 10−3

(B) 6.217 × 10−3 1.069 × 10−2 1.331 × 10−2 1.598 × 10−2 1.924 × 10−2 2.324 × 10−2

(C) 6.284 × 10−3 1.077 × 10−2 1.341 × 10−2 1.612 × 10−2 1.942 × 10−2 2.347 × 10−2

(m =2, n = 1) k =1 k = 2 k =3 k =4 k = 5 k =6

(A) 9.181 × 10−3 8.773 × 10−3 8.460 × 10−3 8.239 × 10−3 8.074 × 10−3 7.945 × 10−3

(B) 1.006 × 10−2 1.127 × 10−2 1.329 × 10−2 1.623 × 10−2 2.000 × 10−2 2.459 × 10−2

(C) 1.011 × 10−2 1.133 × 10−2 1.343 × 10−2 1.641 × 10−2 2.025 × 10−2 2.491 × 10−2

(m =2, n = 3) k =1 k = 2 k =3 k =4 k = 5 k =6

(A) 7.272 × 10−3 9.115 × 10−3 9.429 × 10−3 9.375 × 10−3 9.236 × 10−3 9.086 × 10−3

(B) 8.786 × 10−3 1.207 × 10−2 1.462 × 10−2 1.759 × 10−2 2.126 × 10−2 2.570 × 10−2

(C) 8.860 × 10−3 1.215 × 10−2 1.474 × 10−2 1.775 × 10−2 2.146 × 10−2 2.595 × 10−2

Table 4. The viscous decay factors of non-axisymmetric modes, Dmnk, for Γ = 1/1.9898 at
E =10−5: (A) calculated from the existing formula (Greenspan 1968, Equations 2.9.12 and
2.9.13), (B) the modified asymptotic expression (4.6) and (C) from the fuller numerics.

of comparison, we have calculated three different values of the viscous decay factor:
(A) computed from the existing formula (3.13) (Greenspan 1968, Equation 2.9.12 or
2.9.13), (B) computed from our modified asymptotic expression (4.5) and (C) computed
from the fully numerical analysis. It can be seen that the agreement between the
modified asymptotic expression (4.5) and the fuller numerics is always within about
1 % at E = 10−5 while the existing formula (3.13) can give rise to about 300%
discrepancy. We look at two examples in detail. First, the mode (m = 0, n =1, k = 1)
with frequency ω011 = 0.76 (see table 1). In this case, the existing formula (3.13)
gives a decay factor D011 = 9.49 × 10−3, compared with D011 = 1.02 × 10−2 from the
modified expression (4.5) and D011 = 1.03 × 10−2 from the fuller numerics. Second,
we look at the mode (m = 0, n =1, k =6) with frequency ω016 = 0.16 (see table 1). In
this case, the existing formula (3.13) gives a decay factor D016 = 8.09 × 10−3 while the
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modified expression (4.5) yields D016 = 2.34 × 10−2 and the fuller numerics produces
D016 = 2.38 × 10−2.

Consider now the non-axisymmetric modes, with m > 0. Table 4 shows several
typical values of the viscous decay factor Dmnk for two azimuthal wavenumbers m =1
and m =2, calculated from the existing formula (3.13), the modified expression (4.7)
and full numerics at E = 10−5. Again all the inertial modes shown in table 4 are
needed in an asymptotic solution of the initial-value problem for E � O(10−4). As
expected, the behaviour of non-axisymmetric modes is largely the same as that of
the axisymmetric modes. In general, the agreement between the modified asymptotic
expression (4.6) and the fuller numerics is always within about 1% but the formula
(3.13) can yield a discrepancy of about 300%. Looking at two examples in detail,
for the mode (m =2, n = 1, k = 1) with frequency ω211 = 0.68 (see table 1), the existing
formula (3.13) gives a decay factor D211 = 9.18 × 10−3, which should be compared to
D211 = 1.01 × 10−2 from the modified expression (4.6) and D211 = 1.01 × 10−2 from
the fuller numerics. For the mode (m = 2, n =1, k = 6) with frequency ω216 = 0.15 (see
table 1), the existing formula (3.13) gives a decay factor D216 = 7.95 × 10−3 while the
modified expression (4.6) yields D216 = 2.46 × 10−2 and the full numerics produces
D216 = 2.49 × 10−2. The results show that our modified asymptotic expression can
yield a satisfactory quantitative agreement with the fuller numerics for the inertial
modes required for an asymptotic solution of the initial-value problem.

Finally, we consider time-dependent numerical solutions of the initial-value problem
by carrying out numerical simulations up to the time scale O(E−1/2). Without loss of
general physics in this linear problem, we shall assume an initial velocity distribution
that contains only a single azimuthal wavenumber. For the axisymmetric solution,
we integrate numerically the following two independent scalar equations with a given
initial condition:

∂Φ̄

∂t
− 2

∂Ψ̄

∂z
= E

(
∂2Φ̄

∂z2
+

∂2Φ̄

∂s2
+

1

s

∂Φ̄

∂s
− Φ̄

s2

)
, (5.13)

∂

∂t

(
∂2Ψ̄

∂z2
+

∂2Ψ̄

∂s2
+

1

s

∂Ψ̄

∂s
− Ψ̄

s2

)
+ 2

∂Φ̄

∂z
= E

(
∂2

∂z2
+

∂2

∂s2
+

1

s

∂

∂s
− 1

s2

)2

Ψ̄ , (5.14)

where we expand Ψ̄ and Φ̄ in the form

Ψ̄ = s(1 − ẑ)2(1 − ẑ2)2

[
N∑

n= 0

K∑
k = 0

Ψ̄nk(t) Tk ( ẑ) Tn( ẑ)

]
,

Φ̄ = s(1 − ẑ)(1 − ẑ2)

[
N∑

n =0

K∑
k =0

Ψ̄nk(t) Tk ( ẑ) Tn( ẑ)

]
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.15)

which satisfies the non-slip condition exactly on the bounding surface of the cylinder.
Here Ψ̄nk(t) and Φ̄nk(t) are real time-dependent coefficients. Equations (5.13)–(5.14)
can be cast, after time discretization using an implicit scheme, in the form

N∑
n= 0

K∑
k = 0

[
(2Sn̂k̂nk − Wn̂k̂nk 
t)Φ̄j+1

nk − Tn̂k̂nkΨ̄
j+1
nk 
t

]

=

N∑
n= 0

K∑
k =0

[
(2Sn̂k̂nk + Wn̂k̂nk 
t)Φ̄j

nk + Tn̂k̂nkΨ̄
j
nk 
t

]
, (5.16)
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N∑
n =0

K∑
k = 0

[
(2Xn̂k̂nk − Yn̂k̂nk 
t)Ψ̄ j+1

nk − Zn̂k̂nkΦ̄
j+1
nk 
t

]

=

N∑
n =0

K∑
k = 0

[
(2Xn̂k̂nk + Yn̂k̂nk 
t)Ψ̄ j

nk + Zn̂k̂nkΦ̄
j
nk 
t

]
, (5.17)

where n̂= 0, 1, . . . , N; k̂ = 0, 1, . . . , K, Ψ̄
j+1
nk and Ψ̄

j
nk represent Ψ̄nk at the time step

t = tj+1 and tj , respectively, 
t = tj+1 − tj , and the coefficients with four indexes, such
as Tn̂k̂nk and Xn̂k̂nk , denote complicated integrals involving four Chebyshev functions.
Though any distribution of the initial velocity can be used in our numerical simulation,
we will only discuss the numerical solutions taking the following parameterized initial
distribution:

U0 = − ∂Ψ̄K

∂z
ŝ + Φ̄K φ̂ +

1

s

∂(sΨ̄K )

∂s
ẑ, (5.18)

which represents a physically possible flow satisfying both ∇ · U0 = 0 and the non-slip
boundary condition at the cylinder wall, where

Ψ̄K = s (1 − ŝ)2 (1 − ẑ2)2TK (ŝ) TK (ẑ),

Φ̄K = s(1 − ŝ)(1 − ẑ2)TK (ŝ)TK+1(ẑ),

and TK (x) denotes the standard Chebyshev function. The same initial condition is
also used in calculating asymptotic solutions of the problem. We have also tried many
different forms of the initial condition, all showing a broadly similar behaviour. In
discussing solutions of the initial-value problem, we introduce the normalized kinetic
energy, Ekin, of the time-dependent solution,

Ekin(t) =

∫ 2π

0

∫ 1

0

∫ Γ

0

|u(s, z, φ, t)|2 s ds dz dφ∫ 2π

0

∫ 1

0

∫ Γ

0

|U0|2 s ds dz dφ

,

where u represents the time-dependent velocity calculated either from direct numerical
simulations or from the existing solution (3.14) or from the modified solution (4.6).

Three different axisymmetric solutions subject to exactly the same initial condition
are shown in figure 1(a–c) for a rotating cylinder with Γ =1/1.9898: (A) the existing
asymptotic solution given by (3.14), (B) the modified asymptotic solution given by
(4.7) and (C) the fully numerical simulation given by (5.16)–(5.17). All our numerical
integrations are performed up to t = O(E−1/2) = 100 for E = 10−4 and the values of
K in figures 1(a) − 1(c) signify the scales of the initial velocity distributions which
are, in all three cases, much larger than O(E1/2). Evidently, the modified asymptotic
solution (4.7) of the initial-value problem shows a satisfactory agreement with the
numerical simulation. It is worth noting that, in calculating the kinetic energy Ekin

for both the existing solution (3.14) and the modified solution (4.7), the contribution
from the flow confined in the viscous boundary layer is not included. This exclusion
may explain small but noticeable differences between the modified solution (4.7) and
numerical simulations shown in figure 1.

For the numerical simulation with a non-axisymmetric initial condition, we integrate
the following two independent scalar equations,(

∂

∂t
− E∇2

) [
1

s

∂

∂s

(
s
∂Φ

∂z

)
−

(
∇2 − ∂2

∂z2

)
Ψ

]
+

2

s

∂2Φ

∂z∂φ
= 0, (5.19)
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Figure 1. The normalized kinetic energy, Ekin(t), for solutions of the initial-value problem, in
a logarithmic scale, as a function of time with an axisymmetric initial velocity distribution at
E = 10−4 for Γ =1/1.9898. Three different solutions with exactly the same initial condition
are shown in each panel: (A) the existing asymptotic solution given by (3.14), (B) the modified
asymptotic solution by (4.7) and (C) fully numerical simulations from (5.16)–(5.17).
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where Φ and Ψ are expanded in the form

Ψ = sm (1 − ẑ)2 (1 − ẑ2)

[
N∑

n =0

K∑
k = 0

Ψmnk(t)Tk ( ẑ) Tn( ẑ)

]
eimφ,

Φ = sm+1 (1 − ẑ) (1 − ẑ2)2
[

N∑
n= 0

K∑
k =0

Φmkn(t)Tk ( ẑ) Tn( ẑ)

]
eimφ,

⎫⎪⎪⎬
⎪⎪⎭ (5.21)

which satisfies the non-slip condition exactly on the bounding surface of the cylinder,
where Ψmnk(t) and Φmnk(t) are time-dependent complex coefficients. Though any
initial velocity distribution can be used, we have adopted the following prescribed
parameterized distribution:

U0 = Re

[
1

s

∂ΨK

∂φ
ŝ +

(
∂ΦK

∂z
− ∂ΨK

∂s

)
φ̂ − 1

s

∂ΦK

∂φ
ẑ

]
(5.22)

where

ΨK = sm
[
(1 − ẑ)2(1 − ẑ2)2TK ( ẑ)TK+1( ẑ)

]
eimφ,

ΦK = sm+1
[
(1 − ẑ)(1 − ẑ2)2TK ( ẑ)TK ( ẑ)

]
eimφ,

for both the asymptotic and numerical solutions of the initial value problem.
Numerical integration is performed in a similar way to the axisymmetric solution.

Three different non-axisymmetric solutions subject to the same initial condition
are shown in each panel in figure 2 again for a rotating cylinder with Γ = 1/1.9898:
(A) the existing asymptotic solution given by (3.14), (B) the modified asymptotic
solution given by (4.7) and (C) the fully numerical simulation. Again all our numerical
integrations are performed up to t = O(E−1/2) = 100 for E = 10−4. The numerical
solutions reveal a satisfactory agreement between the modified non-axisymmetric
asymptotic solution (4.7) and the numerical simulation. Other forms of the non-
axisymmetric initial condition which we have used yield similar features to those
shown in figure 2. Noticeable differences between the modified asymptotic solution
(4.7) and the numerical solution in figure 2 are again attributable to the contribution
from the viscous boundary-layer flow excluded in computing the kinetic energy of
the asymptotic solution.

6. Concluding remarks
We have revisited the initial-value problem in a rapidly rotating circular fluid-filled

cylinder that is characterized by an arbitrary small but fixed Ekman number E. We
present solutions to four different but related problems. First, we derive a modified
asymptotic expression for the viscous decay factors valid for the inertial modes of
a broad range of frequencies that must be included in an asymptotic solution of
the initial-value problem. We then perform a fully numerical analysis verifying the
accuracy of the asymptotic viscous decay factors for a wide spectrum of the inertial
modes. On the basis of the modified expression, we derive a modified asymptotic
solution of the initial-value problem in a rapidly rotating circular cylinder. Finally, we
perform numerical simulation, showing satisfactory quantitative agreement between
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Figure 2. The normalized kinetic energy, Ekin(t), for solutions of the initial-value problem, in
a logarithmic scale, as a function of time with the m= 2 initial velocity distribution at E =10−4

for Γ = 1/1.9898. Three different solutions with exactly the same initial condition are shown
in each panel: (A) the existing asymptotic solution (3.14), (B) the modified asymptotic solution
(4.7) and (C) fully numerical simulations.
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the modified asymptotic solution of the the initial-value problem and the fully
numerical simulation.

This work represents, to the best knowledge of the authors, the first attempt to
compare an asymptotic time-dependent solution of the initial-value problem with
the corresponding solution obtained by numerical simulation in a rapidly rotating
cylinder. The results of our modified asymptotic and numerical analyses suggest that
the effects of spatial and temporal non-uniformities obscure the form of the expansion
even in the first viscous corrective terms for an asymptotic solution at an arbitrarily
small but fixed E and, consequently, that E1/2 cannot be taken as an expansion
parameter even for the first viscous corrective terms in the process of deriving the
time-dependent asymptotic solution for small but fixed E. It is worth mentioning
that the spatial and temporal non-uniformity in the initial-value problem is, in many
ways, similar to that found in the problem of convective instabilities for moderately
small Prandtl numbers (Zhang, Liao & Busse 2007).

In the present analysis, nonlinear effects, both in the interior and the boundary
layers, are completely neglected. If the Rossby number Ro is sufficiently small,
Ro � O(E1/2), it is expected that the nonlinear effects are unlikely to play an
important role in the initial-value problem. However, the nonlinear effects would
become significant when Ro � O(E1/2). An important question concerning how the
nonlinear effects at a moderately small Rossby number become more important than
the additional terms of the linear theory is beyond the scope of this study.

Finally, it is important to emphasize that the modified asymptotic solution of
the initial-value problem given by (4.5)–(4.7) is valid for a rotating fluid cylinder
that has arbitrarily small but fixed E and is subject to any physically acceptable
initial condition with a sufficiently small Rossby number. In this case, the size of E

determines the range of the inertial modes that should be included in the asymptotic
expansion, requiring an analytical expression of the viscous decay factors valid for a
broad range of inertial modes. If we consider an ideal mathematical problem by fixing
the initial condition and, then, taking the limit E → 0, the modified asymptotic solution
(4.5)–(4.7) would converge to the existing asymptotic solution (3.13)–(3.14). This is
because the inertial modes with ω = O(1) and O(1) length scales will increasingly
dominate the asymptotic expansion as E → 0 with the fixed initial condition. But
the modified asymptotic solution valid for small but finite E with non-fixed initial
conditions is needed in the practical physical application.
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