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Hydrothermal convection of pore water of uniform viscosity within a permeable, internally heated
spherical shell bounded by two concentric spherical surfaces of inner radius ri and outer radius ro

is investigated by fully three-dimensional numerical simulations based on a domain decomposition
method. We first determine the critical Rayleigh number for the onset of hydrothermal convection
by expressing linear solutions in terms of spherical Bessel functions. It is found that the basic
motionless state becomes unstable with respect to an infinitesimal disturbance characterized by a
spherical harmonic of degree l, the size of which is strongly dependent upon the aspect ratio ri /ro.
However, the three-dimensional structure of convection cannot be determined by the stability
analysis because of the mathematical degeneracy of the linear solution. A new numerical scheme
using a finite difference method is then employed to simulate three-dimensional nonlinear
convection near the onset of convection. When the aspect ratio �ro−ri� /ro is moderately small, a
large number of different stable stationary patterns with exactly the same Rayleigh number are
found by using different initial conditions. The solutions are relevant to the convectively forced
circulation of water in the interiors of early solar system bodies and outer planet icy satellites.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2839052�

I. INTRODUCTION

Carbonaceous chondrite �CC� meteorites preserve a
record of conditions in the early history of our solar system.
The record endures in the elemental and isotopic composi-
tion and mineralogy of these primitive objects. Among the
minerals found in CCs are ones such as phyllosilicates that
form as products of the low temperature interaction of rocks
with liquid water. In order to interpret the mineralogic and
isotopic data from CCs, it is necessary to understand the
nature of the hydrothermal reactions that took place in the
early solar system parent bodies of these meteorites. The
parent bodies from which the CCs derive were undoubtedly
tens to hundreds of kilometers across and originally con-
sisted of ice and rock. The heat of decay of short-lived ra-
dioactive elements such as 26Al melted the ice in the CC
parent bodies and created the environment in which water-
rock interactions altered the mineral content of these bodies.
As shown by Grimm and McSween1 and Young et al.,2 it is
likely that liquid water did not simply fill the porosity of the
parent bodies but circulated in a convective manner similar
to what is observed in geothermal systems in Earth’s crust. It
is important to understand the nature of this hydrothermal
circulation in order to predict the mineralogic composition of
the parent bodies at the conclusion of the process. The CCs
are relic samples of the final stages of the parent body alter-
ation.

Motivated by understanding the physical conditions re-
quired to excite pore water convection in carbonaceous
chondrite parent bodies, Young et al.2 calculated the critical
Rayleigh number for the onset of pore water convection

within the pore space of a permeable sphere. The three-
dimensional structure of the convective flow in full spheres
was then determined by removing the degeneracy through
the nonlinear effect on the basis of a perturbation analysis
�Zhang et al.3�. Porous medium convection in spheres repre-
sents a particularly simple mathematical problem because the
linear solution is characterized by the spherical harmonics
Yl

m�� ,�� of degree l=2, representing the only case in which
the degeneracy can be completely removed by the solvability
condition in the weakly nonlinear perturbation analysis.

Though the critical Rayleigh number for a spherical shell
can be determined analytically, the structure of the convec-
tive flow cannot be so determined because of the well-known
degeneracy of the linear problem in spherical geometry �for
example, Young;4 Busse5�. In a spherical shell with inner
radius ri and outer radius ro, the problem of hydrothermal
convection becomes much more complicated since the criti-
cal eigenfunction usually corresponds to the spherical har-
monics Yl

m�� ,�� of degree l�1. When the aspect ratio ri /ro

is moderate, the selection of the nonlinear patterns bifurcat-
ing from a spherically symmetric basic state poses a compli-
cated and difficult problem. At the onset of spherical hydro-
thermal convection, i.e., Ra=Rac, where Ra is the Rayleigh
number, and the general linear solution may be written, for
example, as

ur = f l�r��
m=0

m=l

�Cm cos m� + Sm sin m��Pl
m�cos �� , �1�

where �r ,� ,�� are spherical polar coordinates, ur is the ra-
dial flow, f l�r� represents a radial eigenfunction, Pl

m�cos ��
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denotes standard spherical harmonics of degree l and
C0 ,Cm ,Sm, m=1, . . . , l are �2l+1� arbitrary constants. The
value of l corresponds to the minimum Rayleigh number Rac

required to initiate convection. Equation �1� indicates that
there exists a �2l+1�-fold degeneracy of the solution. A com-
plete elimination of the �2l+1�-fold degeneracy by nonlin-
earity proves to be a mathematically challenging task. Busse5

used the solvability conditions for the weakly nonlinear
problem to select the nonlinear pattern of the flow for small
values of l with an assumption that all solutions of the non-
linear problem possess symmetry with respect to a plane
through the center of the sphere to simplify the mathematical
analysis. By taking the plane at �=0, the assumption of sym-
metry with respect to the plane leads to

Sm = 0, m = 1, . . . ,l , �2�

in Eq. �1�. Consequently, the �2l+1�-fold degeneracy of the
solution is reduced to an �l+1�-fold degeneracy. Matthews6

employed the group theoretical method �see also Chossat7� to
classify the nonlinear solutions that may exist in the vicinity
of the bifurcation point. Both the approaches are based on
the second-order expansion near the threshold for an abstract
mathematical system in a spherical shell.

The degeneracy arising from the current hydrothermal
convection represents a much more complicated problem,
because the mathematical equations and the relevant bound-
ary conditions governing hydrothermal convection are self-
adjoint. Consequently, the usual weakly nonlinear theory
�e.g., Busse;5 Matthews6� based on the second-order expan-
sion cannot be used. There exist no mathematical theories
that can predict, in the vicinity of instabilities, if there exist
any stable nonlinear solutions or how many stable solutions
are possible at a given l and whether the stable solutions are
oscillatory or stationary. In this case, it becomes necessary to
use a fully numerical analysis to determine the three-
dimensional structure of the convective flow in a spherical
shell porous medium even for weakly nonlinear solutions.
This work presents both the linear stability analysis deter-
mining both the critical Rayleigh number Rac and the corre-
sponding critical degree lc for the onset of hydrothermal con-
vection, which is necessary for understanding the weakly
nonlinear problem, and the fully three-dimensional numeri-
cal simulations revealing a variety of nonlinear convection
patterns near the onset of convection. Apart from planetary
applications, the problem of nonlinear hydrothermal convec-
tion in a spherical shell also provides an ideal physical sys-
tem for understanding the unsolved problem of nonlinear
pattern selection with a large degree of mathematical degen-
eracy in spherical geometry.

It is important to note that the mathematical equations
governing porous medium convection are fundamentally dif-
ferent from ordinary thermal convection, which has been ex-
tensively studied �for example, Schubert;8 Schubert and
Zebib;9 Glatzmaier;10 Zhang and Busse;11 Zhong et al.;12

Yuen et al.;13 Stemmer et al.;14 and Chan et al.15�. The equa-
tion of motion for porous medium convection is described by
Darcy’s law. The applicability of Darcy’s law to the problem
of hydrothermal convection in CC parent bodies depends on
the magnitude and length scale of the porosity. By assuming

the validity of porous medium convection governed by Dar-
cy’s law, we hypothesize that CC parent bodies have porosi-
ties of at most several tens of percent with pore dimensions
that are small compared with the size of the parent body.
Darcy’s law associates a permeability with a rocky assem-
blage. Even unlithified material like the lunar regolith has a
relatively small permeability �10−11 m2� that might be a rep-
resentative upper bound to the permeability of CC parent
bodies �Young et al.2�.

Porous medium convection also differs from ordinary
convection in that the velocity boundary condition at the
bounding surfaces of the spherical shell requires only the
vanishing of the radial flow. This unique feature—Darcy’s
law and simple boundary conditions—suggests a new nu-
merical method for three-dimensional simulations in
spherical-shell geometry. The method makes use of a
poloidal-toroidal decomposition in the representation of
divergence-free convective flows without having to deal with
the higher-order finite difference in the numerical analysis.
By adopting an implicit scheme in the radial direction and an
explicit scheme in the azimuthal and latitudinal directions,
we make effective use of the domain decomposition method
by dividing a spherical shell into subdomains in the form of
watermelon cuts, leading to efficient three-dimensional simu-
lations on modern parallel computers.

In what follows, we first present the model and math-
ematical formulation in Sec. II. The linear stability analysis
is discussed in Sec. III. Section IV presents the method and
results of three-dimensional simulations for nonlinear con-
vection, Sec. V discusses the planetary relevance of the non-
linear solutions, and Sec. VI concludes with a summary and
some remarks.

II. MODEL AND MATHEMATICAL FORMULATION

We consider water-saturated permeable porous material
confined in a spherical shell with inner radius ri and outer
radius ro. The whole spherical domain 0�r*�ro, where r*

is the distance from the center of the sphere, is heated by a
uniformly distributed internal heat source that produces an
unstable radial temperature gradient

�T0
*/�r* = − �r*,

where T
0
* is the conduction temperature, r* is the position

vector, and � is a positive constant. Water fills all of the pore
space in the shell with volumetric porosity �. When � is
sufficiently small, we expect a purely conducting state with-
out convection described by

g = − �r* = − � 4
3	
bG�r*, �3�

T0
* = T

c
* − 1

2��r*�2, �4�

�P0
* = − ��
0�r*, �5�

where g is the acceleration of gravity, T
c
* is the temperature

at the center of the sphere, P0 is the pressure, G is the gravi-
tational constant, and 
b is the bulk density
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b = �1 − ��
r + �
w. �6�

Here, 
r and 
w are the densities of rock and water, respec-
tively. We use spherical polar coordinates �r* ,�* ,�*� with

�r̂ , �̂ ,�̂� the corresponding unit vectors.
For a given size of the spherical shell, ri, and ro, hydro-

thermal convection can take place if the unstable temperature
gradient � is sufficiently large. We use u* to represent the
Darcy velocity of convection, the volumetric flow rate of
water per unit area of the porous medium. In the problem of
pore water convection, the Darcy velocity u*, and the depar-
tures of temperature and pressure from their values in the
basic state, denoted by �* and P*, respectively, are governed
by Darcy’s law, the equation of continuity, and the heat equa-
tion

0 = − �P* + 
w��r*�* −


k
u*, �7�

0 = � · u*, �8�

cb
��*

�t*
+ 
wcwu* · ��* = �
wcwr* · u* + �b�

2�*, �9�

where � is the thermal expansivity of water, cb is the average
heat capacity per unit volume of the water and rock,  is the
viscosity of water, which is assumed to be constant, k is the
permeability of the sphere �assumed constant�, cw is the spe-
cific heat of water, and �b is the average thermal conductiv-
ity of the water and rock. The Boussinesq approximation has
been made and the condition required for Darcy’s law to be
valid is that the scale of the porosity is small compared with
the radius of the sphere. We assume impermeable and iso-
thermal conditions at the bounding surfaces of the shell; i.e.,

r* · u* = 0, �* = 0, at r* = ri and ro. �10�

In deriving the nondimensional equations, we employ the
following scales:

r* = �ro − ri�r, t* =
�ro − ri�2cb

�b
t, u* =

�b


wcw�ro − ri�
u ,

P* =
�b

k
wcw
P, �* = ��ro − ri�2�

for length, time, velocity, pressure, and temperature, respec-
tively, which lead to the dimensionless equations

0 = − �P + Rar� − u , �11�

0 = � · u , �12�

��

�t
+ u · �� = r · u + �2� , �13�

where Ra is the Rayleigh number defined as

Ra =
����ro − ri�4

K�
�14�

with K= / �
wk� and �=�b / �
wcw�. Equations �11�–�13� are
subject to the boundary conditions

r · u = 0, � = 0 at r = �/�1 − �� and 1/�1 − �� ,

�15�

where �=ri /ro, the aspect ratio of a spherical shell, is an
important parameter of the problem.

Our analysis consists of two major parts. The first is
concerned with the linear stability which determines the
critical Rayleigh number for the onset of hydrothermal con-
vection. The result of the stability analysis not only provides
an essential guide for fully nonlinear simulations, it also
helps to understand the results of the nonlinear simulations.
The second part involves direct three-dimensional numerical
simulations of the nonlinear convection aimed at determining
the structure of convection.

III. LINEAR STABILITY ANALYSIS

In the linear stability analysis, we express the Darcy ve-
locity u in terms of poloidal v and toroidal w components

u = � � � � �rv� + � � �rw� , �16�

which satisfies Eq. �12� automatically. The scalar equations
for v and w can be obtained by substituting Eq. �16� into Eq.
�11� and then applying the operators r ·�� and r ·����
onto the resulting equation, which yields the two equations

r · � � �� � �rw� + � � � � �rv�� = 0, �17�

Ra L2� − r · � � � � �� � �rw� + � � � � �rv�� = 0,

�18�

where L2 is the differential operator representing the negative
Laplacian on a unit sphere

L2 = r2� �2

�r2 +
2

r

�

�r
− �2� . �19�

The linearized heat equation �13� in terms of the poloidal
flow v becomes

��

�t
= L2v + �2� . �20�

The boundary condition �15� becomes

v = 0, � = 0, at r = �/�1 − �� and 1/�1 − �� . �21�

After carrying out the vector analysis on Eqs. �17� and �18�,
we obtain the following linear equations describing the onset
of convection

L2w = 0, �22�

Ra L2� + L2�2v = 0, �23�

��

�t
= L2v + �2� , �24�

Equation �22� implies that the toroidal flow vanishes every-
where. Moreover, it can be readily shown that the linear
system �23� and �24� with the boundary conditions �21� is
self-adjoint and that exchange of instability is valid; i.e.,
�� /�t=0.
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At the onset of spherical convection, the general linear
solution may be written in the form

v = �
m=0

m=l

f l�r��Cm cos m� + Sm sin m��Pl
m�cos �� , �25�

� = �
m=0

m=l

gl�r��Cm cos m� + Sm sin m��Pl
m�cos �� , �26�

where f l�r� and gl�r� represent the radial eigenfunctions and
Pl

m�cos �� is the associated Legendre function of degree l
normalized such that

1

4	
�

0

2	

d��
0

	

sin �d�	�Pl
m�cos ��eim��

��Pl
m�cos ��eim��*
 = 1. �27�

Here, the asterisk denotes the complex conjugate. The �2l
+1� coefficients Cm, m=0,1 ,2 , . . . , l, and Sm, m
=1,2 ,3 , . . . , l are undetermined. Substitution of Eqs. �25�
and �26� into Eqs. �23� and �24� yields

Ra l�l + 1�gl�r� − �� d2

dr2 +
2

r

d

dr
� −

l�l + 1�
r2 �2

gl�r� = 0,

�28�

f l�r� = � Ra

l�l + 1��1/2
gl�r� . �29�

In other words, the general linear solution can be cast in the
form

� = �
m=0

m=l

	jl��Ra�l + 1�l�1/4r� + Qlnl��Ra�l + 1�l�1/4r�


� �Cm cos m� + Sm sin m��Pl
m�cos �� , �30�

v = �
m=0

m=l � Ra

l�l + 1��
1/2

	jl��Ra�l + 1�l�1/4r�

+ Qlnl��Ra�l + 1�l�1/4r�


� �Cm cos m� + Sm sin m��Pl
m�cos �� , �31�

where jl and nl are spherical Bessel functions of the first and
second kind and

Ql = − jl� �Ra�l + 1�l�1/4�

�1 + �� � nl� �Ra�l + 1�l�1/4�

�1 + �� � .

�32�

The Rayleigh number Ra at the onset of convection is a
solution of the equation

jl� �Ra�l + 1�l�1/4�

�1 + �� �nl� �Ra�l + 1�l�1/4

�1 + �� �
− jl� �Ra�l + 1�l�1/4

�1 + �� �nl� �Ra�l + 1�l�1/4�

�1 + �� � = 0. �33�

For a given �, Eq. �33� can be solved to determine the values
of Ra as a function of l. The lowest value of Ra required to

excite convection, which is referred to as the critical Ray-
leigh number Rac, is physically relevant.

The result of the stability analysis is summarized in Fig.
1, showing the marginal Rayleigh number Ra for different l
as a function of the aspect ratio �=ri /ro. The l=1 mode, the
only case in which the structure of the convective flow can
be determined uniquely by the stability analysis, is never
physically preferred. Note that, in the case of ordinary con-
vection, the critical degree of a spherical harmonic is l=1
when the inner core is sufficiently small �Chandrasekhar16�.
For a moderately thick spherical shell with �=0.5, the criti-
cal Rayleigh number Rac is located at the degree lc=4, giv-
ing rise to a ninefold degeneracy of the linear solution. The
critical degree increases to lc=14 corresponding to a 29-fold
degeneracy for a thin spherical shell at �=0.8. In this case, a
large number of linear convection modes are clustered near
the onset of instabilities, making any mathematical analysis
of the weakly nonlinear problem highly formidable. Several
typical critical Rayleigh numbers Rac and their neighboring
values are given in Table I for different aspect ratios of the
spherical shell.

FIG. 1. The marginal Raleigh number Ra is plotted against the aspect ratio
� for different values of l at the onset of hydrothermal convection.

TABLE I. Typical values of the marginal Rayleigh number Ra as a function
of l for various values of �. The most unstable mode is denoted by the bold
number.

l ��=0.2,Ra� ��=0.4,Ra� ��=0.5,Ra� ��=0.8,Ra�

1 98.9 65.5 58.3

2 77.2 35.3 26.6

3 81.6 30.3 19.7

4 31.0 18.0

5 18.3

10 2.134

11 2.040

12 1.985

13 1.959

14 1.956

15 1.971
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In summary, �2l+1� coefficients, Cm, m=0,1 , . . . , l, and
Sm, m=1, . . . , l, in the general solution �30� and �31� cannot
be determined, resulting in the �2l+1�-fold degeneracy of the
linear solution. While the critical degree lc and the radial
structure of the flow, gl�r� and f l�r�, are determined by the
linear analysis, the structure of the convective flow remains
undetermined when lc�1. When lc�1, a complete or partial
elimination of the �2l+1�-fold degeneracy by the effect of
nonlinearity remains a mathematically challenging task. In
the next section, we attempt to determine the structure of
three-dimensional convection of pore water in spherical
shells via direct numerical simulations.

IV. NONLINEAR CONVECTION

A. The equations for numerical simulation

In order to use the domain decomposition method based
on a finite difference scheme, we derive a set of second-order
scalar equations from Eqs. �11�–�13� by using expression
�16�. In a manner similar to deriving the linear equations, we
obtain the following three scalar equations governing fully
nonlinear convection:

Ra L2� + �2� = 0, �34�

L2v = � , �35�

��

�t
− � − �2� = −

�

r

��

�r
−

1

r2

�

��
� ��rv�

�r
� ��

��

−
1

�r sin ��2

�

��
� ��rv�

�r
� ��

��
, �36�

subject to the boundary conditions

v = � = � = 0, �37�

at the two bounding surfaces ri=� / �1−�� and ro=1 / �1−��.
By introducing a new variable �, the highest order of de-
rivative in the system is the second, permitting a straightfor-
ward implementation of finite difference schemes in
spherical-shell geometry.

B. The numerical scheme

Our finite difference scheme is based on uniform grids in
the azimuthal direction but nonuniform grids in the latitudi-
nal and radial directions. Nonuniform grids are introduced
mainly because of the axial singularity in spherical polar
coordinates. We examine the heat equation �36� in detail.

Let �rk ,� j ,�l, k=1, . . . ,nr; j=1, . . . ,n�; l=1, . . . ,n�� de-
note the grid points in spherical polar coordinates and

Uk =
1

2
�drk + drk+1�, Vj =

1

2
�d� j + d� j+1� ,

Wl =
1

2
�d�l + d�l+1� ,

sin � j+1/2 = sin
� j + � j+1

2
, sin � j−1/2 = sin

� j − � j−1

2
.

It follows that, for example, the differential operator �2� at
the grid �rk ,� j ,�l� can be cast in the difference form

1

2
�2�kjl =

rk + Uk−1

rkUk�Uk + Uk−1�
��k+1�jl +

rk − Uk

rkUk−1�Uk + Uk−1�
��k−1�jl +

1

rk
2 sin2 � jWl�Wl + Wl−1�

�kj�l+1�

+
1

rk
2 sin2 � jWl−1�Wl + Wl−1�

�kj�l−1� +
sin � j+1/2

rk
2 sin � jVj�Vj + Vj−1�

�k�j+1�l +
sin � j−1/2

rk
2 sin � jVj−1�Vj + Vj−1�

�k�j−1�l

−
rk�Uk + Uk−1� − �Uk

2 − Uk−1
2 �

rkUkUk−1�Uk + Uk−1�
�kjl −

1

rk
2 sin2 � jWlWl−1

�kjl −
sin � j+1/2Vj−1 + sin � j−1/2Vj

VjVj−1�Vj + Vj−1�
�kjl. �38�

A semi-implicit method, implicit in the radial direction but
explicit in both the azimuthal and latitudinal directions, has
been used. With this semi-implicit scheme, the time discreti-
zation for Eq. �36� can be cast in the form

�n+1 − �n

�t
−

1

r2

�

�r
�r2 �

�r
��n+1 − �n�� = �2�n + fn, �39�

where �n+1 and �n denote the temperature at the time steps
t= tn+1 and tn, respectively, and fn represents the terms ex-
plicitly evaluated at time t= tn including the nonlinear term.

Making use of Eq. �38�, we obtain a finite difference equa-
tion for Eq. �36�:

A���k−1�jl
n+1 − ��k−1�jl

n � − B��kjl
n+1 − �kjl

n �

+ C���k+1�jl
n+1 − ��k+1�jl

n � = D , �40�

where

A =
2�rk − Uk��t

rkUk−1�Uk + Uk−1�
,
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B = 1 + 2�t� rk�Uk + Uk−1� − �Uk
2 − Uk−1

2 �
rkUkUk−1�Uk + Uk−1�

+
1

rk
2 sin2 � jWlWl−1

+
sin � j+1/2Vj−1 + sin � j−1/2Vj

VjVj−1�Vj + Vj−1� � ,

C =
2�rk + Uk−1��t

rkUk�Uk + Uk−1�
,

D = − �t��2� jkl
n + f jkl

n � .

An important property of the finite difference equation �40�
is that it is tridiagonal and can be therefore readily solved
without using an iterative process. Equations �34� and �35�
are dealt with in a similar way.

Numerical solutions of the resulting finite difference
equations such as Eq. �40� are obtained by dividing the
whole spherical shell into N subdomains, where N denotes
the number of central processing units available on a parallel
computer; they are defined by

2	�j − 1�
N

� � �
2	j

N
, 0 � � � 	 ,

ri � r � ro, j = 1,2,3 . . . N .

The sketch of the domain decomposition is shown in Fig. 2
when N=5. At the interface of two subdomains at � j

=2	j /N, numerical solutions in the neighboring regions are
overlapped, leading to the numerical solution for the whole
spherical shell. The numerical code is parallelized and highly
efficient: the speed of computation for a particular nonlinear
convection solution increases typically about 1.7 times when
the processor number is doubled.

Before solving the fully nonlinear convection problem, a
benchmark comparison is made with an exact solution in
order to provide a useful check on the validity and accuracy
of the numerical scheme �see the Appendix�.

C. The structure of convective flow

The linear stability analysis only determines the critical
Rayleigh number Rac at which the basic motionless state
becomes unstable with respect to infinitesimal disturbances
characterized by spherical harmonics of degree lc. The �2lc

+1�-fold degeneracy suggests a multiplicity of convection
patterns with exactly the same Rayleigh number. An effec-
tive way of obtaining multiple nonlinear solutions is to treat
the expected steady nonlinear convection as an initial-value
problem, starting numerical integration from carefully cho-
sen different initial conditions. We employ the parametrized
initial condition

u�t = 0� = �1

r
L2��r̂ +

1

r

�

��
� �

�r
�r����̂

+
1

r sin �

�

��
� �

�r
�r����̂ , �41�

where � is

� =
1

r
sin 	�r − �/�1 − ���Yl0

m0��,�� , �42�

l0 and m0 being the two parameters of the initial condition.
It is not our purpose to show that, as in any strongly

nonlinear system, a final state among the set of nonlinear
solutions is highly sensitive to initial conditions. In the
present approach, a parametrized initial condition is em-
ployed merely as a numerical way of obtaining different con-
vection patterns. In fact, the final state of a nonlinear con-
vection solution describing a weakly nonlinear hydrothermal
flow does not sensitively depend upon initial conditions. This
is why we have to make a really large perturbation, i.e.,
change parameters in Eq. �42�, in order to reach a different
solution numerically.

Consideration in this study is given to three representa-
tive cases: a thick spherical shell with aspect ratio �=ri /ro

=0.2, an intermediate thickness shell with �=0.5 and a thin
shell with �=0.8.

We anticipate that the structure of convection in a thick
spherical shell at �=ri /ro=0.2 is largely similar to that in the
whole sphere. The analytical study of pore water convection
in spheres �Zhang et al.3� suggests that the only possible
structure of nonlinear convection is given by the axisymmet-
ric spherical harmonic Y2

0�� ,��. The result of our fully three-
dimensional simulation is consistent with that prediction. Ki-
netic energies of the simulated nonlinear convection are
displayed in Fig. 3 as a function of time for several Rayleigh
numbers and aspect ratio �=0.2. All stable nonlinear con-
vection solutions for Rac=77.2�Ra�300 are found to be
stationary. For the weakly nonlinear solution at �= �100
−Rac� /Rac=0.30, convection is axisymmetric and character-
ized by the spherical harmonic Y2

0�� ,��, which is shown in
Fig. 4�a�. When the Rayleigh number increases to about Ra
=150, a secondary bifurcation takes place and the corre-
sponding convection becomes a mixture of mainly two
spherical harmonics Y3

2�� ,�� and Y4
0�� ,��. The structure of

the nonlinear solution at Ra=300 is shown in Fig. 4�b�.
There are no substantial variations in the convection struc-

FIG. 2. Sketch of the domain decomposition in spherical-shell geometry.
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ture for Ra in the range 150�Ra�300. The thick shell with
�=0.2 represents the simplest case; the convection structure
becomes multiform and complicated as the shell becomes
thinner.

For a moderately thick spherical shell with aspect ratio
�=0.5, we first consider weakly nonlinear convection at a
fixed small Rayleigh number �= �Ra−Rac� /Rac= �20
−18.0� /18.0=0.11. Of course, the heat transport is depen-
dent upon the aspect ratio of the shell, similar to the ordinary
convection �Olson and Corcos17�. For a fixed aspect ratio, the
Nusselt number of weakly nonlinear convection is found to
be slightly different for different stationary solutions with the
same Rayleigh number. For example, the initial condition
with Y4

0�� ,�� leads to the nonlinear solution with the Nusselt
number Nu=0.72, while the condition with Y4

2�� ,�� gives
rise to Nu=0.70 �see Fig. 5�. This is consistent with nonlin-
ear ordinary convection in various systems �Hansen and
Ebel;18 Stemmer et al.14�.

But different nonlinear solutions may have different total
kinetic energies. Our primary aim is to obtain multiple non-
linear convection solutions with the exact same Rayleigh

number. The stability analysis shows that the critical convec-
tion is characterized by spherical harmonics of degree lc=4;
i.e., there exists a ninefold degeneracy in the linear solution.
By using different initial conditions, we have found four
nonlinear stable patterns of convection with the same Ray-
leigh number as shown in Fig. 5. All weakly nonlinear solu-
tions in the vicinity of the critical Rayleigh number Rac are
found to be stationary. It usually takes a few tens of thermal
diffusion times for a simulation to reach its stationary state.
The azimuthally axisymmetric and equatorially symmetric
initial condition with l0=4 and m0=0 in Eq. �41� leads to an
axisymmetric stationary convection shown in Fig. 5�a�. Its
convection pattern on a spherical surface is essentially de-
scribed by the single spherical harmonic Y4

0�� ,��, indicating
that the stationary bifurcation from the linear solution �30�
and �31� with l=4, C0=1, Cm=0, m=1, . . . ,4, and Sm=0,
m=1, . . . ,4 exists and is stable. Moreover, the kinetic energy
of the nonlinear convection, i.e., Ekin=3.05, attains the maxi-
mum among different nonlinear solutions with the same Ray-
leigh number. An initial condition with l0=4 and m0=1 leads
to the same pattern apart from a rotational transformation.
When the initial condition is azimuthally periodic with m0

=2, the final pattern of the convection also becomes azimuth-
ally periodic and dominated by the two spherical harmonics,
i.e., Y4

2�� ,�� and Y4
0�� ,��, as displayed in Fig. 5�b�. By the

same procedure, different convection patterns are also ob-
tained from other initial conditions: �l0=4, m0=3� leads to
the pattern dominated by the two spherical harmonics, i.e.,

(a)

(b)

FIG. 3. Kinetic energies of nonlinear convection �a� at the aspect ratio �
=ri /ro=0.2 for five different Rayleigh numbers and �b� at the aspect ratio
�=ri /ro=0.5 for six different Rayleigh numbers are shown as a function of
time.

(a)

(b)

FIG. 4. �Color online� Isosurfaces of the temperature of nonlinear convec-
tion at �=ri /ro=0.2: �a� for the Rayleigh number Ra=100 and �b� for Ra
=300. Red contours indicate positive temperature ��0 and blue contours
correspond to negative temperature ��0.
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Y4
3�� ,�� and Y4

0�� ,�� �Fig. 5�c��, while �l0=4, m0=4� gives
rise to the pattern dominated by the two spherical harmonics;
i.e., Y4

4�� ,�� and Y4
0�� ,�� �Fig. 5�d��. Our nonlinear simula-

tion suggests that �i� all bifurcations from the linear solution
are stationary and �ii� the stationary bifurcation from the lin-
ear solution with a single spherical harmonic, i.e., Y4

m�� ,��,
m�0, is either nonexistent or unstable. When Ra becomes
sufficiently large �Ra�200�, convection becomes time de-
pendent or chaotic and the complex patterns can no longer be
partially elucidated on the basis of the linear stability
analysis.

In a thin spherical shell with �=ri /ro=0.8, nonlinear
convection becomes extremely complicated because of the
existence of a 29-fold degeneracy. It is impossible that all
realizable stable solutions near the onset of convection can
be found via three-dimensional numerical simulations. Our
objective is to reveal that there exist a large number of stable
convection patterns with exactly the same Rayleigh number.
We restrict our calculations to convection solutions that are
equatorially symmetric with respect to the equator plane of a
spherical shell, i.e.,

��,u�,u�,ur���,�,r� = ��,− u�,u�,− ur��	 − �,�,r�;

we also confine our calculation to a fixed Rayleigh number
�= �Ra−Rac� /Rac=0.11. Of course, the position of a pole or
an equator in our convection system is arbitrary as a conse-
quence of the spherically symmetric basic state and bound-
ary condition. When we refer to an equatorial symmetry or
an equator, we always imply that it is in an appropriately
chosen spherical coordinate system, which is usually associ-
ated with the spatial structure of an initial condition used in
our numerical simulations. Eight different nonlinear patterns

of convection, shown in Fig. 6, are found by starting numeri-
cal simulations with the eight different initial conditions

l0 = 14, m0 = 0,2,4,6,8,10,12,14,

at a fixed supercritical Rayleigh number �= �Ra−Rac� /Rac

=0.11, revealing how different initial conditions result in
multiple nonlinear patterns near the onset of convection. All
the different nonlinear solutions are found to be stationary. In
Table II, we summarize the relationship between the initial
condition and the dominant spherical harmonics in the sta-
tionary convection as well as the kinetic energies of the non-
linear flows. Similar to the case with �=0.5, the kinetic en-
ergy of the axisymmetric nonlinear convection attains the
maximum among various nonlinear solutions with the same
Rayleigh number. It is remarkable that there exist so many
different stable, stationary patterns of hydrothermal convec-
tion at exactly the same Rayleigh number, although our nu-
merical approach cannot determine the exact number of
stable stationary patterns near the onset of convection.
Again, the results of nonlinear simulations suggest that the
convection pattern comprises several spherical harmonics
near the onset of convective instabilities.

V. PLANETARY RELEVANCE OF THE WEAKLY
NONLINEAR SOLUTIONS

In discussing the relevance of the weakly nonlinear so-
lutions obtained here to the problem of hydrothermal con-
vection in the parent bodies of carbonaceous chondrite me-
teorites, two main issues need to be addressed. One is the
spherical shell geometry, and the other is the vigor of con-
vection in the CC parent bodies. Initially, CC parent bodies

(a)(a)(a)(a)

(b)(b)(b)(b)

(c)(c)(c)(c)

(d)(d)(d)(d)

FIG. 5. �Color online� Isosurfaces of the temperature of
nonlinear convection at �=ri /ro=0.5 and Ra=20 ob-
tained from four different initial conditions: �a� Y4

0�� ,��
with Ekin=3.05, Nu=0.723, �b� Y4

2�� ,�� with Ekin

=2.28, Nu=0.698, �c� Y4
3�� ,�� with Ekin=2.52, Nu

=0.683, �d� Y4
4�� ,�� with Ekin=2.41, Nu=0.619.
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were likely intimate mixtures of ice and rock. Short-lived
and long-lived radioactivity in the rock heated these bodies,
resulting in the melting of the ice. The main question about
the CC parent bodies is whether the liquid water was station-
ary or circulated convectively �Young et al.2�. As a CC par-
ent body was heated, ice at the center would melt first and
the heavier rock would sink toward the center and push the
water outward. As more ice melted, a liquid water-rock shell
would eventually form and the water might undergo hydro-
thermal convection. The rock matrix would deform and tend
to compact toward the center of the body, squeezing the wa-
ter outward. The time scale for the complete separation of
water and rock depends on many poorly known parameters,
such as the water/rock ratio, the strength of the rock matrix,

TABLE II. Dominant spherical harmonics in weakly nonlinear stationary
convection solutions at �= �Ra−Rac� /Rac=0.11 with �=0.8 obtained by
starting simulation from different initial conditions.

Initial condition Dominant spherical harmonics Kinetic energies

Y14
0 �� ,��: Y14

0 �� ,��, Y16
0 �� ,��, Y18

0 �� ,��, 0.346

Y14
2 �� ,��: Y14

2 �� ,��, Y16
2 �� ,��, Y16

6 �� ,��, 0.307

Y14
4 �� ,��: Y14

4 �� ,��, Y16
4 �� ,��, Y14

0 �� ,��, 0.290

Y14
6 �� ,��: Y14

6 �� ,��, Y14
0 �� ,��, Y16

6 �� ,��, 0.294

Y14
8 �� ,��: Y14

8 �� ,��, Y18
0 �� ,��, Y16

0 �� ,��, 0.278

Y14
10�� ,��: Y14

10�� ,��, Y16
0 �� ,��, Y14

0 �� ,��, 0.305

Y14
12�� ,��: Y14

12�� ,��, Y16
0 �� ,��, Y14

0 �� ,��, 0.320

Y14
14�� ,��: Y14

14�� ,��, Y16
0 �� ,��, Y18

0 �� ,��, 0.317

(a) (b) (c)

(d) (e) (f)

(g) (h)

FIG. 6. �Color online� Isosurfaces of � of nonlinear convection for �=0.8 at �= �Ra−Rac� /Rac=0.11, where Rac=1.956, obtained with different initial
conditions: �a� Y14

0 �� ,��, �b� Y14
2 �� ,��, �c� Y14

4 �� ,��, �d� Y14
6 �� ,��, �e� Y14

8 �� ,��, �f� Y14
10�� ,��, �g� Y14

12�� ,��, and �h� Y14
14�� ,��.
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the permeability of the rock matrix, the size of the body, etc.
These matters are beyond the scope of this paper. We assume
that the consolidation of the rock and the outward migration
of the water happens slowly enough that the hydrothermally-
induced circulation of water through the spherical shell rock
matrix is a phenomenon that occurred in the CC parent bod-
ies. Hydrothermal convection through rocky spherical shells
is not only relevant to CC parent bodies, but it is also likely
to have occurred or to be presently active in a number of
outer planet icy satellites that contain liquid water oceans,
among which are Europa and Enceladus �Schubert et al.19�.

With regard to the vigor of convection, it is not expected
that hydrothermal convection in CC parent bodies or outer
planet icy satellites would be strongly nonlinear. The param-
eters determining the vigor of convection include the perme-
ability of the rock, the concentration of radiogenic heat
sources in the rock, the thickness of the water-rock shell, the
viscosity of the water, and other less important parameters.
The exact role of all the parameters is given in Eq. �14� for
the Rayleigh number, which must exceed a critical value for
convection to occur. Values of all these parameters for the
CC parent bodies are discussed in Young et al.2 Estimates of
the Rayleigh number based on the parameter values in Young
et al.2 for a CC parent body about 100 km in radius and with
a rock-water shell about 50 km thick result in a value of Ra
�from Eq. �14�� less than about ten times the critical value of
Ra given in Fig. 1. Therefore, while hydrothermal convec-
tion in CC parent bodies of this typical size is expected, the
convection is not strongly supercritical, and the weakly non-
linear solutions obtained here should approximate reality.

VI. CONCLUDING REMARKS

This work represents the first study of the multiplicity of
convection of pore water of uniform viscosity within a per-
meable and internally heated spherical shell. The three-
dimensional numerical simulations based on a new domain
decomposition method reveal the existence of a large number
of different stable stationary patterns at exactly the same
Rayleigh number in the vicinity of convective instabilities. It
provides important insight into a class of important fluid dy-
namic problems having a large degree of mathematical de-
generacy in spherical geometry.

Our theoretical knowledge of the existence and stability
of nonlinear solutions of hydrothermal convection in a mod-
erately thin spherical shell is highly limited. We have to
tackle the problem by performing fully three-dimensional
simulations via different initial conditions while keeping the
Rayleigh number unchanged. This numerical approach is of
practical utility only and is unrelated to the characteristic
feature of a nonlinear system in which a final state of a
nonlinear solution is sensitively dependent on initial condi-
tions.

Our approach has the unavoidable consequence that it
cannot unveil all the possible stable nonlinear solutions.
Nevertheless, on the basis of the numerical simulations, we
propose the following conjectures for nonlinear convection
near the threshold in moderately thin spherical shells: �i� all
weakly nonlinear solutions are stationary and �ii� the station-

ary nonlinear solution consists of more than one spherical
harmonic: the bifurcation from the linear solution of a single
spherical harmonic is unstable. The numerical results help to
develop a general mathematical theory of nonlinear convec-
tion.

It is important to recognize that the problem of hydro-
thermal convection in spherical shells studied in this paper is
self-adjoint. This property imposes difficulties for the ability
of the nonlinear theory to remove fully or partially the math-
ematical degeneracy because the quadratic term in the usual
small amplitude expansion is identically zero. Consequently,
the higher-order terms play an essential role in determining
the structure of nonlinear convection. However, the incorpo-
ration of more realistic physics into the model, like the tem-
perature dependence of water viscosity, destroys the self-
adjointness of the mathematical problem. In this case,
although the analysis becomes more complicated and
lengthy, it may permit some theoretical progress towards the
understanding of this highly challenging problem.
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APPENDIX: THE VALIDITY OF THE DOMAIN
DECOMPOSITION METHOD

In an effort to check the validity, accuracy, and effi-
ciency of the numerical scheme, we first solve the following
equation in spherical shells:

�H

�t
= �2H + f0�t,r,�,�� , �A1�

subject to the boundary condition

H�ri,�,�� = H�ro,�,�� = 0, �A2�

where f0 is a prescribed analytical function. An exact solu-
tion for Eq. �A1� is simply given by

Hexact = H0 = cos�sin � cos � + cos ���r2 − ri
2��r2 − ro

2�sin t

�A3�

if we choose

f0 =
�H0

�t
− �2H0.

Let Hn+1 and Hn denote the values of H at the time steps t
= tn+1 and t= tn respectively. Equation �A1� can be written as

Hn+1 − Hn

�t
−

1

r2

�

�r
�r2 �

�r
�Hn+1 − Hn�� = �2Hn + fn, �A4�

where the radial direction is treated implicitly while the azi-
muthal and latitudinal directions are treated explicitly. In this
way, the resulting matrix is tridiagonal and can be effectively
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solved on a parallel computer by a domain decomposition
method �see Fig. 2�.

The fully numerical solution for Eq. �A1�, i.e., Hnumerical,
can be then compared with the corresponding exact solution.
The accuracy of the numerical solution is measured by

Err =
1

V
�

V

�Hexact − Hnumerical�2dV ,

where V denotes the volume of the spherical shell. In Table
III, we show several numerical solutions calculated using
different spatial resolutions for ri /ro=0.5. It can be seen that
the exact solution is well approximated when n�=40, n�

=36 and nr=20. In our actual numerical simulation for non-
linear convection in spherical shells, the spatial resolution is
checked by varying values of n�, n�, and nr. The spatial
resolution used in our nonlinear simulation is typically n�

=O�100�, n�= �100�, and nr=40.
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�n��n��nr� �t Err
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