10 research outputs found

    Microstructure and mechanical properties of pseudo binary eutectic Al–Mg2Si alloy processed by laser powder bed fusion

    Get PDF
    The traditional wrought Al–Mg–Si alloys fabricated via laser powder bed fusion (LPBF) are prone to hot cracks, unless adding grain refiners in as-LPBFed Al alloys. In this work, the Al-9.6 wt.%Mg-4.9 wt.%Si (equivalent to pseudo binary eutectic Al-13.3 wt.%Mg2Si) alloy with low solidification range and hot-cracking susceptibility was successfully processed by LPBF. The as-LPBFed alloys have reached a high relative density of 99.3% at the VED of 129.6 J/mm3. The microstructures were featured by fine α-Al grains and cellular eutectic Mg2Si, accompanied by a high number density of dislocations, coherent GP zone and α-Al12(Fe,Mn)3Si phases. The as-LPBFed Al-13.3Mg2Si alloy exhibited the high ultimate tensile strength of 557 MPa, yield strength of 439 MPa and elongation of 2.9%. In addition to the grain refinement and dislocation strengthening, the strength enhancement is mainly ascribed to the dispersion strengthening from the divorced nanosized eutectic Mg2Si. The results demonstrate that manipulation of alloys at near eutectic composition is effective to achieve high strength Al–Mg–Si alloys processed by LPBF

    Quantifying Species Diversity with a DNA Barcoding-Based Method: Tibetan Moth Species (Noctuidae) on the Qinghai-Tibetan Plateau

    Get PDF
    <div><p>With the ongoing loss of biodiversity, there is a great need for fast and effective ways to assess species richness and diversity: DNA barcoding provides a powerful new tool for this. We investigated this approach by focusing on the Tibetan plateau, which is one of the world's top biodiversity hotspots. There have been few studies of its invertebrates, although they constitute the vast majority of the region's diversity. Here we investigated species diversity of the lepidopteran family Noctuidae, across different environmental gradients, using measurements based on traditional morphology as well as on DNA barcoding. The <i>COI</i> barcode showed an average interspecific K2P distance of , which is about four times larger than the mean intraspecific distance (). Using six diversity indices, we did not detect any significant differences in estimated species diversity between measurements based on traditional morphology and on DNA barcoding. Furthermore, we found strong positive correlations between them, indicating that barcode-based measures of species diversity can serve as a good surrogate for morphology-based measures in most situations tested. Eastern communities were found to have significantly higher diversity than Western ones. Among 22 environmental factors tested, we found that three (precipitation of driest month, precipitation of driest quarter, and precipitation of coldest quarter) were significantly correlated with species diversity. Our results indicate that these factors could be the key ecological factors influencing the species diversity of the lepidopteran family Noctuidae on the Tibetan plateau.</p></div

    Effectiveness of China's nature reserves in representing ecological diversity

    No full text
    Mainland China has 2538 nature reserves, covering approximately 15% of its total land area. However, little is known of their effectiveness in capturing the country's ecological diversity. We calculated the degree of representation of terrestrial ecoregions, biodiversity priority areas, and vegetation types within 2217 of these reserves for which spatial data were available. Of the total area set aside as nature reserves, almost 56% was concentrated in the three western provinces of Tibet, Qinghai, and Xinjiang. Of the 53 ecoregions found in China, 29 had over 10% of their land protected through the reserve system; in addition, most (81%) of China's natural vegetation communities were represented in at least one nature reserve. On the basis of these findings, we recommend that China should (1) conduct a nationwide ecoregional biodiversity assessment; (2) establish a georeferenced (spatially referenced) database of nature reserves and other types of protected areas; (3) increase efforts to improve international cooperation regarding management of cross-border ecoregions; and (4) create or expand reserves in eastern and southern China, with a focus on protecting ecosystem services to help sustain local communities' economies

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios
    corecore