179 research outputs found

    Two-dimensional bimetal-embedded expanded phthalocyanine monolayers: a class of multifunctional materials with fascinating properties

    Full text link
    The expanded phthalocyanine (EPc) single-layer sheets with double transition metals (labeled as TM2EPc, TM = Sc-Zn) are predicted to be a new class of two-dimensional (2D) metal-organic materials with a series of favorable functional properties by means of systematic first-principle calculations and molecular dynamics simulations. The strong coordination between metal and EPc substrate accounts for the excellent structural stability. Chemical bonding analysis has demonstrated the absence of TM-TM bonding. Each metal center is isolated, but connected to the organic framework by four 2c-2e TM-N {\sigma}-bonds to form an extended 2D network. Unexpectedly, it is found that the V2EPc is an antiferromagnetic metal with Dirac cone, while Cr2EPc exhibits ferromagnetic Dirac half-metallicity, which is not common in 2D materials. Excitingly, the ferromagnetic Cr2EPc and antiferromagnetic Mn2- and Fe2-EPc have high magnetic transition temperatures of 223, 217, and 325 K, respectively, which are crucial for the practical applications of spintronics. Cr2EPc can maintain the Dirac half-metallicity under -6 % ~ 2 % biaxial strains, and Fe2EPc can transform from semiconductor to half-metal by applying -6 % ~ -10 % compressive strains. Additionally, the TM2EPc monolayers exhibit a full response to visible light and some materials have strong absorption in the ultraviolet and infrared regions in addition to visible light, showing extraordinary solar light-harvesting ability. Notably, the designed type-II heterojunctions Fe2EPc/SnC, Co2EPc/GeS, and Ni2EPc/2H-WSe2 have high power conversion efficiency (PCE > 15%), especially the PCE of Ni2EPc/2H-WSe2 reaches 25.19%, which has great potential in solar cell applications. All these desired properties render 2D TM2EPc monolayers promising candidates for future applications in nanoelectronics, spintronics,optoelectronics, and photovoltaic devices

    Control of spatially homogeneous distribution of heteroatoms to produce red TiO2 photocatalyst for visible-light photocatalytic water splitting

    Get PDF
    The authors thank National Natural Science Fundation of China (Nos. 51825204, 51572266, 21633009, 51629201), the Major Basic Research Program, Ministry of Science and Technology of China (2014CB239401), the Key Research Program of Frontier Sciences CAS (QYZDB-SSW-JSC039) for the financial support. G. L. is grateful for the award of the Newton Advanced Fellowship.The strong band-to-band absorption of photocatalysts spanning the whole visible light region (400-700 nm) is critically important for solar-driven photocatalysis. Although it is actively and widely used as photocatalyst for various reactions in the past four decades, TiO2 has a very poor ability to capture the whole-spectrum visible light. Here, by controlling the spatially homogeneous distribution of boron and nitrogen heteroatoms in anatase TiO2 microspheres with a predominance of high-energy {001} facets, a strong visible light absorption spectrum with a sharp edge beyond 680 nm is achieved. The red TiO2 with the homogeneous doping of boron and nitrogen obtained shows no increase in defects like Ti3+ that are commonly observed in doped TiO2. More importantly, it has the ability to induce photocatalytic water oxidation to produce oxygen under the irradiation of visible light beyond 550 nm and also photocatalytic reducing water to produce hydrogen under visible light. These results demonstrate the great promise of using the red TiO2 for visible light photocatalytic water splitting and also provide an attractive strategy for realizing the wide-spectrum visible light absorption of wide-bandgap oxide photocatalysts.PostprintPeer reviewe

    A suitable method for alpine wetland delineation: An example for the headwater area of the yellow river, Tibetan Plateau

    Get PDF
    Alpine wetlands are one of the most important ecosystems in the Three Rivers Source Area, China, which plays an important role in regulating the regional hydrological cycle and carbon cycle. Accordingly, Wetland area and its distribution are of great significance for wetland management and scientific research. In our study, a new wetland classification model which based on geomorphological types and combine object-oriented and decision tree classification model (ODTC), and used a new wetland classification system to accurately extract the wetland distributed in the Headwater Area of the Yellow River (HAYR) of the Qinghai-Tibet Plateau (QTP), China. The object-oriented method was first used to segment the image into several areas according to similarity in Pixels and Textures, and then the wetland was extracted through a decision tree constructed based on geomorphological types. The wetland extracted by the model was compared with that by other seven commonly methods, such as support vector machine (SVM) and random forest (RF), and it proved the accuracy was improved by 10%–20%. The overall classification accuracy rate was 98.9%. According to our results, the HAYR’s wetland area is 3142.3 km2, accounting for 16.1% of the study area. Marsh wetlands and flood wetlands accounted for 37.7% and 16.7% respectively. A three-dimensional map of the area showed that alpine wetlands in the research region are distributed around lakes, piedmont groundwater overflow belts, and inter-mountain catchment basin. This phenomenon demonstrates that hydrogeological circumstances influence alpine wetlands’ genesis and evolution. This work provides a new approach to investigating alpine wetlands

    The role of Chinese herbal medicine in the treatment of diabetic nephropathy by regulating endoplasmic reticulum stress

    Get PDF
    Diabetic nephropathy (DN), a prevalent microvascular complication of diabetes mellitus, is the primary contributor to end-stage renal disease in developed countries. Existing clinical interventions for DN encompass lifestyle modifications, blood glucose regulation, blood pressure reduction, lipid management, and avoidance of nephrotoxic medications. Despite these measures, a significant number of patients progress to end-stage renal disease, underscoring the need for additional therapeutic strategies. The endoplasmic reticulum (ER) stress response, a cellular defense mechanism in eukaryotic cells, has been implicated in DN pathogenesis. Moderate ER stress can enhance cell survival, whereas severe or prolonged ER stress may trigger apoptosis. As such, the role of ER stress in DN presents a potential avenue for therapeutic modulation. Chinese herbal medicine, a staple in Chinese healthcare, has emerged as a promising intervention for DN. Existing research suggests that some herbal remedies may confer renoprotective benefits through the modulation of ER stress. This review explores the involvement of ER stress in the pathogenesis of DN and the advancements in Chinese herbal medicine for ER stress regulation, aiming to inspire new clinical strategies for the prevention and management of DN

    Nitrogen Doped Carbon Nanosheets Encapsulated in situ Generated Sulfur Enable High Capacity and Superior Rate Cathode for Li-S Batteries

    Get PDF
    Lithium-sulfur batteries (LSBs), with large specific capacity (1,675 mAh g−1), are regarded as the most likely alternative to the traditional Lithium-ion batteries. However, the intrinsical insulation and dramatic volume change of sulfur, as well as serious shuttle effect of polysulfides hinder their practical implementation. Herein, we develop three-dimensional micron flowers assembled by nitrogen doped carbon (NC) nanosheets with sulfur encapsulated (S@NC-NSs) as a promising cathode for Li-S to overcome the forementioned obstacles. The in situ generated S layer adheres to the inner surface of the hollow and micro-porous NC shell with fruitful O/N containing groups endowing both efficient physical trapping and chemical anchoring of polysulfides. Meanwhile, such a novel carbon shell helps to bear dramatic volume change and provides a fast way for electron transfer during cycling. Consequently, the S@NC-NSs demonstrate a high capacity (1,238 mAh g−1 at 0.2 C; 1.0 C = 1,675 mA g−1), superior rate performance with a capacity retention of 57.8% when the current density increases 25 times from 0.2 to 5.0 C, as well as outstanding cycling performance with an ultralow capacity fading of only 0.064% after 200 cycles at a high current density of 5.0 C
    • …
    corecore