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Alpine wetlands are one of the most important ecosystems in the Three Rivers

Source Area, China, which plays an important role in regulating the regional

hydrological cycle and carbon cycle. Accordingly, Wetland area and its

distribution are of great significance for wetland management and scientific

research. In our study, a new wetland classification model which based on

geomorphological types and combine object-oriented and decision tree

classification model (ODTC), and used a new wetland classification system

to accurately extract the wetland distributed in the Headwater Area of the

Yellow River (HAYR) of the Qinghai-Tibet Plateau (QTP), China. The object-

oriented method was first used to segment the image into several areas

according to similarity in Pixels and Textures, and then the wetland was

extracted through a decision tree constructed based on geomorphological

types. The wetland extracted by the model was compared with that by other

seven commonly methods, such as support vector machine (SVM) and random

forest (RF), and it proved the accuracy was improved by 10%–20%. The overall

classification accuracy rate was 98.9%. According to our results, the HAYR’s

wetland area is 3142.3 km2, accounting for 16.1% of the study area. Marsh

wetlands and flood wetlands accounted for 37.7% and 16.7% respectively. A

three-dimensional map of the area showed that alpine wetlands in the research

region are distributed around lakes, piedmont groundwater overflow belts, and

inter-mountain catchment basin. This phenomenon demonstrates that

hydrogeological circumstances influence alpine wetlands’ genesis and

evolution. This work provides a new approach to investigating alpine wetlands.
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1 Introduction

Wetlands were first defined by the United States in 1956 as

lowlands covered by shallow, temporary or intermittent bodies of

water (Forsberg, 1992). The Ramsar definition of wetlands

include areas of marshland, peatland and water, artificial or

natural, including areas of sea water with a depth of less than

6 m at low tide (Finlayson and Moser, 1991; Gong et al., 2010).

Wetland ecosystems, while accounting for 1.5% of the world land

area, provide nearly half of the global ecosystem services. They

are among the world’s most productive and valuable ecosystems

(Costanza et al., 1997; Zedler, 2003). Wetlands play a key role in

regulating runoff, mitigating flood disasters and improving water

quality (Zhang et al., 2011). Wetlands also provide essential

habitats for many plants and animals, maintain ecological

stability and protect biodiversity (Guo et al., 2017; Mahdavi

et al., 2018). Alpine wetlands were Located between the

treeline and snowfields and glaciers, present throughout most

of world’s mountains and are defined as small (1 m2 to a few

square hectares) and shallow water bodies characterized by at

least the seasonal presence of surface water, and global alpine

wetlands often experience stronger climate changes compared

with the low-altitude wetlands (Wissinger et al., 2016; Zhang

et al., 2016; Carlson et al., 2020). As a special type of wetland,

alpine wetlands play an important role in plant and animal

protection, environmental climate regulation and material

circulation in the Tibetan Plateau area (Zhao et al., 2014).

The wetland areas of China are mainly distributed in the

Qinghai-Tibet Plateau (QTP) and northeast region and were

estimated to cover 451084 ± 2014 km2 in 2015 (Mao et al., 2020).

The wetland area in Tibet, Qinghai, Inner Mongolia,

Heilongjiang and Xinjiang provinces accounted for 53.7% of

the total wetland area in China (Mao et al., 2020). Alpine

wetlands are widely developed on the QTP, accounting for

13.99% of the total wetland in China (Dong and Xu, 2018). In

recent years, climate change is expected to lead to more severe

warming at high elevations or latitudes because of inconsistent

global warming patterns (Ellis and Rochefort, 2006). The QTP is

one of the most sensitive and vulnerable regions under the effects

of intense climate change (Xue et al., 2014). Studies have

shown that climate change is one of the important reasons for

the degradation of the QTP wetlands (Wu et al., 2017).

Climate change mainly affects wetlands through variable

temperature and precipitation (Wang R et al., 2020). In the

past 40 years, about 10% of the alpine wetland area on the

QTP has vanished (Zhang et al., 2020). According to the

Intergovernmental Panel on Climate Change Fourth

Assessment Report, a simulation by Xue et al. suggests that

about 35.7% of wetlands could vanish by 2080 by severe

warming, even in the most optimistic scenario (Xue et al.,

2014). To protect alpine wetlands, accurate, reliable, and

quick information about their distribution is an important

prerequisite for alpine wetland protection.

Remote sensing technology has been widely used in wetland

surveys and identification because of its advantages in wide

coverage, real-time information acquisition and convenient

collection (Zhang et al., 2021). Compared with low-altitude

areas, wetland monitoring and identification on the QTP is

difficult and collecting field observations is particularly time

consuming. In most cases, remote sensing is the only feasible

alpine wetland monitoring and research method. Previous

studies have mainly relied on Landsat satellite sensors (MSS,

TM, ETM+, and OLI) and SPOT images for wetland monitoring

and land cover mapping (Sader et al., 1995; Li and Jia, 2008;

Farda et al., 2016). Several global land cover products have

mapped the distribution of wetlands using remote sensing

images, including GlobalLand30 (Jun et al., 2014; Chen et al.,

2015), FROM-GLC BUMODIS (Friedl et al., 2002), GLCNMO

2013 (Kobayashi et al., 2017) and DIS Cover (Loveland et al.,

2000) and GLC2000 (Global Land Cover 2000) (Bartholome and

Belward, 2005). Although such datasets have been widely used,

their accuracy and quality are not satisfactory for many

applications (Chen et al., 2015), including the extraction of

alpine wetlands. Numerous researchers (Iwao et al., 2006;

Gong, 2009; Fritz et al., 2010) have highlighted the

inadequacies of these data, such as considerably low

accuracies and low consistency amongst products (Chen et al.,

2015). The definition of a wetland in many data products are

uncertain; for example, there is not a uniform standard for the

definitions of bogs, marshes and swamps, and wetland definitions

are not scientific (Mitra et al., 2005; Yin et al., 2014). The diversity

of wetland definitions will blur the wetland boundaries and then

affect the classification of wetlands (Wang J et al., 2020).

The most widely used wetland classification algorithms

include the traditional K-means, minimum distance and

maximum likelihood (ML) methods (Aldrich, 1997).

Advanced algorithms include support vector machine (SVM)

(Cortes and Vapnik, 1995), decision tree (DT) (Breiman, 2001),

and random forest (RF) (Breiman, 2001). However, mapping

alpine wetlands presents challenges due to the particular

topographic conditions, and common extraction methods tend

to be inaccurate. Scholars extracted TM data of wetlands in the

middle and lower reaches of the Ngu River from 1986 to 2000

(Huang et al., 2005), summarized the spectral characteristics of

remote sensing data of wetlands in western Inner Mongolia, and

established interpretation indicators (Meng et al., 2007). Li et al.

used TM data to extract the Maqu wetland by principal

component analysis and decision tree (Li et al., 2009). Li et al.

used Landsat eight Operational Land Imager (OLI) data to

extract the wetlands in Norgay area, and compared SVM, RF

and DT methods, and concluded that RF and DT have better

extraction effects for alpine wetlands (Li et al., 2020). Most of

these studies were based on pixel-based classifications and relied

on a large number of ground samples (Gallant, 2015; Mui et al.,

2015; Mao et al., 2020). Moreover, most studies used landscape

indices such as shape and texture indices for wetland
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identification (Dronova, 2015). More recently, wetland

research has experimented with the object-oriented image

segmentation method, which can depict an image as a

homogeneous object, use different decision rules, and

reasonably divide and extract the wetlands (Blaschke, 2010;

Dronova et al., 2011; Dronova, 2015; Mao et al., 2018b;

Campbell and Wang, 2019).

The main purpose of this study was to map the wetlands of

the Headwater Area of the Yellow River (HAYR) with Landsat

eight OLI data and develop an extraction method suitable for

alpine wetlands, which is based on object-oriented and decision

tree coupled analysis combined with topography and

geomorphology. The specific objectives were to: a) improve

the extraction precision of wetland areas in the HAYR, b)

FIGURE 1
Location of the study area, Region of interests (ROI) and field verification points; LP: lacustrine plain; AP: alluvial-proluvial plain; MP: mountain
plain.
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compare the existing wetland extraction methods and existing

results, c) verify the relationship between wetland distribution

and topography in the HAYR.

2 Study area

The study region (33°56′-35°25′N, 95°52′-98°22′E) is located
in the northeastern QTP, Qinghai Province, Southwest China, at

the northern foot of Bayan Har Mountain, spanning Maduo and

Qumalai counties, with a total area of 2.1 × 104 km2 (Figure 1).

The average altitude of the plateau area is greater than 4,500 m.

It has a continental semi-arid alpine climate (Luo et al., 2018),

with annual precipitation of 287.49–754.36 mm and annual

temperature of −4°C (Tian et al., 2018; Zhang et al., 2020),

annual evaporation amount of 700–900 mm (Duan et al.,

2015). In this region, more than 80% of the area is permafrost,

with some sporadic or isolated permafrost and seasonal frozen soil

(Li et al., 2016; Luo et al., 2018). Altitude and topography largely

determine the thickness and thermal state of the permafrost. The

thickness and temperature of permafrost become thicker and

lower with elevation (Luo et al., 2018). Due to the frozen layer

acts as a semi-impermeable barrier that greatly limits the drainage

of water from the upper soil layer, so that when the topsoil layer

thaws seasonally, sudden heavy rainfall occurs and liquid water

tends to be retained near the surface, Form seasonal wetlands (Avis

et al., 2011). These wetlands are highly dependent on rainfall and

have strong fluctuations, so they are not included in the

classification this time. The vegetation primarily consists of

alpine meadows in the southern HAYR and alpine steppes in

the northern counterpart (Luo et al., 2020).

The study area is dominated by numerous small lakes and

thermokarst ponds, which are largely developed in the valley or

bottom of themain stream of the Yellow River, as well as in alpine

plains and marsh meadows (Luo et al., 2020). The diversity of

species in the alpine area is ensured by the presence of wetlands.

Alpine wetland ecosystems are important water and biodiversity

reservoirs and represent a key ecological type in the QTP nature

reserve (Zhao and He, 2000; An, 2003).

3 Data and methods

3.1 Data sources and processing

For this analysis, we relied on multi-spectral images acquired

by the Landsat eight OLI satellites, which were downloaded from

TABLE 1 Details of the Landsat eight OLI scenes used in the study.

Type Path row Time Cloud cover (%)

OLI 134/36 2020/9/17 0.09

OLI 135/35 2020/10/10 0.02

OLI 135/36 2020/10/10 0.01

FIGURE 2
A general description of ODTC. (A) classification flow chart; (B) hierarchical decision-tree. NDVI: Normalized Difference Vegetation Index;
NDWI: Normalized Difference Water Index; WI: Wetness Index; NDMI: Normalized Difference Moisture Index.
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TABLE 2 Wetlands and land cover types categories as seen in a Landsat eight OLI color composite (bands 7, 5, 3) and field photos.

Category Description OLI image example Field photo example

Lake Dark blue, blue-black or blue-green, large area, a natural polygon water
body

River Blue, black or turquoise; characterized by a sinuous natural linear body
of water

Marsh Dark green, light green or blue-green; the area varies in size and shape
is irregular; the interior has black dotted water pools, mainly

herbaceous plants

Flood wetland Gray-green, light blue or blue-green; the shape is irregular and is found
around river channels, valleys or at the base of a piedmont diluvial fan

and other areas prone to water collection

High cover
vegetation area

Dark green or dark green, low-lying areas that can easily collect water
to form puddles, often confused with wetlands in color, and developed

in gentle areas at the foot of mountains

Low cover
vegetation area

light green or yellowish-green; sparse vegetation and distributed
throughout the study area, usually far from water bodies and

connected with wasteland

Bare land Yellow or bright white, in the bedrock mountain area is lavender,
shape is irregular, often developed in the bedrock mountain area or the

central alluvial diluvial fan
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United States Geological Survey (USGS, https://www.usgs.gov/)

for satellite imagery analysis and the images resolution was 30 m.

Altogether, three scenes of OLI images with paths from 134 to

135 and rows from 35 to 36 are needed to cover the entire land

area of HAYR. QTP vegetation were grows from June to October

(Duan et al., 2021), so images for the period from July to October

would have been preferred, but cloud cover caused no suitable

image to be found for July and August. The selected data are

listed in Table 1.

Landsat eight OLI images possess nine spectral bands with a

spatial resolution of 30 m (Band1: Coastal, Band2: Blue, Band3:

Green, Band4: Red, Band5: NIR, Band6: SWIR1, Band7: SWIR2,

Band9: Cirrus) except the panchromatic band (Band8: Pan) at a

spatial resolution of 15 m. Before wetland information

extraction, the remote sensing images were pre-processed

through geometric correction, radiation calibration,

atmospheric correction, etc., in order to reduce the error

caused by topography, slope Angle and aspect, mountain

shadow, etc. All processing was performed using the ENVI

5.3 software. In addition, ASTER GDEM digital elevation data

with a spatial resolution of 30 m were downloaded and

mosaicked to cover the entire study area. Slope layers were

generated from the DEM using ArcGIS data software

(version 10.8).

3.2 Method

Object-oriented and decision tree classification methods were

combined in this study to accurately extract alpine wetlands. Firstly,

the pre-processed images of the study area were segmented to

generate homogeneous landscape objects. Then, image spectral

indices such as Normalized Difference Vegetation Index (NDVI),

Normalized Difference Water Index (NDWI) were calculated.

According to the geomorphic types, the study was divided into

lacustrine plain, alluvial-proluvial plain and mountain plain

(Figure 1). Wetland samples were extracted from the wetlands in

the three regions, and the parameters of their spectral index were

statistically analyzed to determine the threshold value. The detailed

processing steps are described in the following sections.

FIGURE 3
Comparison of segmentation results at different scales based on Landsat eight OLI; the background image is a Landsat eight OLI image
composite from bands 7, 5, 3. (A) Original image. (B) Segmentation scale: 30. (C) Segmentation scale: 40. (D) Segmentation scale: 50. (E)
Segmentation scale: 60. (F) Segmentation scale: 70. (G) Segmentation scale: 80.
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3.2.1 Information extraction by the object-
oriented method

The entire classification process was carried out with the

feature extraction module in the ENVI5.3 software. The detailed

process is shown in Figure 2.The first determined the regional

wetland types using the Ramsar Convention and the local

standard of Qinghai Province DB63T 1746-2019 Technical

Guide for Remote Sensing Classification of Alpine Wetlands.

The regional land cover types were divided into six categories:

rivers and lakes, marsh wetlands, flood wetlands, high cover

vegetation areas, low cover vegetation areas, and bare lands.

Detailed information is shown in Table 2.

The second step was determining the most suitable

combination of image segmentation scale and merging levels.

Each image was segmented into several small block objects with

similar properties. Each object represented a combination of

FIGURE 4
Image segmentation sketch diagrams of representative areas based on Landsat eight OLI. The red line represents the object border. (A)Marsh,
high coverage vegetation areas, low coverage vegetation areas, and lakes; (B) flooded wetlands, bare land, and low coverage vegetation areas; (C)
high coverage vegetation areas, low coverage vegetation areas and marsh; (D) Rivers, flooded wetlands, marsh, and low cover vegetation areas.

TABLE 3 Feature list of image object identification for wetland classification.

Type Feature name Parameters/Band Formula/Description

Spectral features Band reflectance B3 Green Band

B4 Red Band

B5 NIR (Near Infrared) Band

B7 SWIR-2(Short-wave Infrared) Band

Spectral indices NDWI (B3-B5)/(B3+B5)

NDVI (B5-B4)/(B5+B4)

NDMI (B5-B6)/(B5+B6)

WI The third component of k-t Transform

Environmental features Topography Elevation DEM with resolution of 30 m

Slope gradient Generated from DEM
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pixels within a range that had the same or similar properties.

High-scale segmentation produces fewer patches, but because it

combines features of different types, it results in large errors.

Low-scale segmentation produces more patches and also leads to

a large error. It is particularly important to choose an appropriate

segmentation scale as it directly affects the accuracy of the

classification. The appropriate segmentation scale varies by

region and image. In the feature extraction module, there are

two segmentation algorithms (edge and intensity) and two

merging algorithms (full Lambda scheduling and fast Lambda)

that can be selected.

In this study, we chose the edge algorithm and all Lambda

scheduling algorithm. We applied a trial-and-error approach,

conducting many experiments on combining segmentation and

merging levels to determine the optimal scale. Figure 3 shows six

segmentation scales ranging from 30 to 80. The segmentation

level of 30 results in over-segmentation (Figure 3B). The

excessive segmentation of ground objects leads to low

separability among different image objects, reducing

classification accuracy. A segmentation scale of 80 groups

different kinds of fragments/objects into one object

(Figure 3G). This also means that the subsequent information

extraction cannot be performed correctly. Figure 3D shows

the results of the optimal segmentation scale (50) and

merge level (20), with high internal uniformity, clear

boundary contours and ground objects that are clearly

distinguished.

In order to better reflect the effect of optimal segmentation

scale segmentation, we selected segmented images representing

regions for analysis (Figure 4). In Figure 4A, marsh, high

coverage vegetation areas, low coverage vegetation areas, and

lakes are clearly clustered in one object, with high internal

homogeneity. Figure 4B shows flooded wetlands, bare land,

and low coverage vegetation areas. Figure 4C shows high

coverage vegetation areas, low coverage vegetation areas and

marsh. Rivers, flooded wetlands, marsh, and low cover vegetation

areas are mainly shown in Figure 4D. Overall, Landsat8 has a

good segmentation effect, the optimal segmentation scale is 50,

and the merge scale is 20.

The third step was to calculate vegetation indices (Table 3).

Then, the study area was divided into lacustrine plains, alluvial-

proluvial plains and mountain plains based on the elevation and

topographic characteristics. Based on the regional topography

and geomorphology, we extracted sample points of multiple

geomorphic units respectively. According to the statistical

results, the altitudes of 4265 m and 4300 m were taken as the

boundaries of three types of geomorphic units. The spectral

characteristics and ground object characteristics of the three

types of regional features were sampled, and the threshold

was determined according to the extraction results. A decision

tree was constructed to classify the images for example Figure 5 in

conformity with the statistical results. The Figure 5 presents an

example of classification rules for delineating wetlands in a block

of AP.

The fourth step was to use other classification methods such

as support vector machine (SVM), decision tree method (DT)

and random forest method (RF) to compare and verify the

advantages of the proposed method. The classification

methods were applied adopting their default parameter values

in ENVI 5.3.

3.2.2 Classification accuracy assessments
The classification results were evaluated using the confusion

matrix method. Region of interests (ROIs) was identified on the

image through visual interpretation and digitized, and used to

calculate the classification accuracy. To further assess the

reliability of the classification results, field investigation and

field information collection were carried out in the study area

in 2020 and 2021. The distribution of the samples is shown in

FIGURE 5
An example of classification rules for delineatingwetlands in a
block of lacustrine plain.

TABLE 4 Slope grade division.

Grades 1 2 3 4 5 6 7 8 9

Slope (°) >25 18–25 13–18 10–13 8–10 6–8 4–6 2–4 0–2
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Figure 1. In this study, a total of 848 surface interest area samples

were selected to verify the accuracy of the classification.

In order to further verify the classification accuracy,

we used a new comprehensive index Distance between

Indices of Simulation and Observation (DISO) (Hu et al.,

2019; Zhou et al., 2021) to compare the accuracy of each

classification. For the real status of wetlands status [here we

note A= (a1, a2, . . . , an)] and the model simulated wetland

distribution results [here we note B= (b1, b2, . . . , bn)], we

have:

R � ∑n
i�0 ai − �a( ) bi − b( )�����������∑n

i�0 ai − �a( )2
√ �����������∑n

i�0 bi − b( )2
√ (1)

AE � 1
n
∑n
0

bi − ai( ) (2)

RMSR �
�����������
1
n
∑n
0

bi − ai( )2
√

(3)

DISO �
������������������������������������������
R − R0( )2 + RB − RB0( )2 + NRMSE −NRMSE0( )2

√
(4)

RB � AE

�a| | NRMSE � RMSE

�a| | (5)

R: Correlation coefficient of strength and direction of linear

association between simulation and observation data; AE:

Absolute error in measuring any persistent deviation (positive

TABLE 5 Classification accuracy of land cover in the HAYR.

Category Sample number Producer’s accuracy User’s accuracy

Lake and river 77 100% 99.9%

Marsh 261 98.1% 99.3%

Flood wetland 108 98.9% 99.1%

High cover vegetation area 106 97.4% 99.6%

Low cover vegetation area 165 98.5% 97.5%

Bare land 131 97.4% 97.3%

Summary 848 Overall Accuracy = 98.9% Kappa = 0.98

FIGURE 6
Classification of land cover in the HAYR.
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underestimation and negative overestimation) from observed

data; RMSE: Quantifies the root mean square error of the

mean deviation amplitude.

The best performance is obtained from the best statistical

metrics, such as R = 1, AE = 0, NRMSE = 0 (Zhou et al., 2021).

Then DISO has the form:

DISO �
����������������������
R − 1( )2 + RB2 +NRMSE2

√
(6)

3.2.3 Wetland distribution and topography
The HAYR wetland map was combined with ASTER GDEM

data in ArcGIS10.8 software to analyze the distribution in

relation to the local topography.

To further demonstrate the relationship between wetland

development and topography and hydrogeological conditions,

this study analyzed elevation, slope, lithology and wetland

distribution data. Slope of the study area was divided into

nine grades (Table 4), and along with lithology, was

superimposed on wetland distribution.

FIGURE 7
Spatial distribution of wetlands in the HAYR.

TABLE 6 Statistics of land cover type area at the HAYR.

Category Area (km2)

Lake and river 1556.5

Marsh 1286.6

Flood wetland 569.2

High cover vegetation area 1392.4

Low cover vegetation area 13386.9

Bare land 2947.9

FIGURE 8
Seasonal wetlands formed by rainfall in catchment areas.
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4 Results

4.1 Assessment of classification accuracy

The overall accuracy of land cover classification was 98.9%,

and the Kappa coefficient was 0.98 (Table 5), confirming that the

method adopted in this study is suitable for the extraction of

wetlands in the HAYR. The detailed results can be seen in

the land cover classification map (Figure 6). In order to

further highlight the distribution of wetlands, Figure 6

is simplified to show only marsh, flood wetland, lake and

river, and the HAYR wetland distribution map is made

(Figure 7).

4.2 Area and distribution of wetlands in the
HAYR

The wetland area of the HAYR was estimated to be

3412.3 km2 in 2020 and is summarized by type in Table 6.

Wetlands were extensively distributed across the study area

with notable spatial heterogeneity (Figure 7).

The area of marsh wetlands accounted for 37.7% of the total

wetland area in the HAYR. Marsh wetlands were generally

distributed in the periphery of lake ponds and the

groundwater overflow zone of piedmont alluvial fans. In

mountainous areas, the groundwater overflow area and inter-

mountain catchment basin are also prone to develop marsh

wetlands. Flood wetland, having the smallest wetland area,

was mostly present in the northeast and northwest,

accounting for about 16.7% of the wetland area. Flood

wetlands were formed in areas such as canyons and rivers

that are prone to be inundated by floods caused by

atmospheric precipitation. Rivers and lakes, as important

water resources, are widely distributed in the HAYR, with a

total area of about 1556.5 km2. The two largest lakes in the region,

Gyaring lake Ngoring lake, are located in the northeast. The

FIGURE 9
3D wetland map of the Yellow River Source.

FIGURE 10
Elevation characteristics of wetlands in the source of the
Yellow River.

FIGURE 11
Slope characteristics of wetlands in the source of the Yellow
River.

Frontiers in Environmental Science frontiersin.org11

Yin et al. 10.3389/fenvs.2022.1062954

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1062954


existence of the two lakes plays an important role in the

formation and development of wetlands in the HAYR.

4.3 Field validation

A total of 13 field validation sample points were collected in

2021 (Figure 1), and 12 were correctly classified with 92.3%

accuracy in the results of the object-oriented decision tree

classification method. 11 wetland samples were included in

the 13 field samples, of which 10 were correctly classified with

90.9% accuracy. One field validation sample point was

misclassified, which was verified as a wetland in the field, but

the classification result showed that it was a high-cover

vegetation area. Since it rained in the study area before the

field investigation, and this point was located in a catchment

basin among mountains, which was conducive to groundwater

collection and easy to develop into a seasonal wetland, it was easy

to produce errors, as can be seen in Figure 8.

All the 14 field validation samples collected in July 2020

(Figure 1) were consistent with the classification results of this

study. Since the selected remote sensing images were from

September to October 2020, the accuracy of this method in

alpine wetland extraction and the applicability of this method

in alpine wetland extraction was further confirmed.

4.4 Topographic and geological analysis

In order to better see the distribution characteristics of

wetlands in the study area, the wetland map was three-

dimensionalized (Figure 9). Flood wetlands were found to be

widely distributed around rivers, the northern valley and the

western part of the lake district. Marsh wetlands are distributed

around the lake and in the southern alpine alpine area, and the

alpine wetlands are mainly located in the piedmont area, the

groundwater overflow zone of the piedmont alluvial fan and the

alpine basin. The distribution and development of wetlands in

the HAYR is strongly related to topography and hydrogeological

conditions. The method of combining topography and

geomorphology used to extract wetlands in this study has

been further verified. The presented approach can play a

crucial role in the study of alpine wetlands.

Regarding the distribution of wetlands, there are strong

differences in elevation, slope and lithology. Water bodies

were mainly present between 4156 m and 4,319 m asl. Marsh

was mainly present between 4250 m and 4680 m, while the

wetland area increases substantially around 4450 m. Flood

wetlands were mainly concentrated between 4250 m and

4550 m (Figure 10). Wetlands are mainly distributed in areas

with a slope of less than 8°. These areas are low-lying and have

good catchment conditions. Among lakes and rivers, 85% are

distributed in regions with a slope of less than 2°. More than 85%

of flood wetlands and 83% of marsh wetlands are located in areas

with slopes of less than 6° (Figure 11).

FIGURE 12
Lithological characteristics of wetlands in the HAYR.

TABLE 7 Results of remote sensing classification of wetlands in the study area using eight methods.

Method Kappa Overall accuracy (%) Producer’s accuracy (%) User’s accuracy (%) DISO

CART 0.67 77.1 91.8 22.9 0.47

NNC 0.82 88.1 92.6 46.8 0.25

SVM 0.84 89.0 84.3 59.9 0.23

RF 0.81 87.1 72.5 68.5 0.27

Min-distance 0.77 84.1 58.1 73.5 0.33

Max-likelihood 0.82 87.9 78.7 57.1 0.25

Mahalanobis distance 0.72 81.1 49.7 73.6 0.39

ODTC 0.98 98.9 99.3 98.1 0.03
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There are many lithologic types in the study area, which can

be divided into sedimentary rocks, magmatic rocks and

quaternary loose deposits (http://www.resdc.cn/). More than

95% of rivers and lakes, 81% of marsh wetlands and 89% of

flood wetlands are distributed in quaternary loose deposits area

(Figure 12).

5 Discussion

This study used 30-m spatial resolution remote sensing data

from Landsat eight to produce the most detailed wetland map of

the HAYR. The mapping results were based on the Ramsar

Convention and Qinghai Province wetland classification

standard and 2 years of field sampling. The results can be

used for alpine wetland ecological research and alpine wetland

protection as the collected field samples include a complete range

of species. Due to particularity of the studied location, there are

relatively few studies on the wetlands of the HAYR. Additionally,

most studies show some misunderstanding of alpine wetlands.

Most of them misclassify alpine meadows into wetlands, or flood

wetlands into low-cover vegetation areas, or even just divide

wetlands into wetlands and water bodies. As a result, the

extracted alpine wetland area is either overestimated or

underestimated. Tong (Tong et al., 2014) divided the wetlands

in the Three-River Headwaters Region of China into two

categories: marsh and water body. Zhang (Jiping et al., 2011)

divided the wetlands in Damqu Basin, the source region of the

Yangtze River, into riverine, lacustrine and palustrine. Zhang

(Zhang et al., 2021) divided the wetlands in Pumqu Basin in The

Qomolangma region into rivers, lakes, swamps and flood

wetlands. However, Zhang did not consider the catchment

area between valleys, and only identified and extracted the

flood wetlands around rivers. This study solves the problems

of these studies to a certain extent.

5.1 Comparison with other methods

The comparison of the classification accuracy of the eight

classification methods tested in this study are shown in Table 7.

We compared the classification accuracy of ODTC with seven

commonly used machine learning algorithms, such as SVM,

CNN and RF. The results show that the classification accuracy

of ODTC is improved by 10%–20% compared with these seven

methods, and ODTC has higher user accuracy, producer

FIGURE 13
The comparison of the eight classification methods.
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accuracy, overall accuracy and kappa coefficient. For wetland

extraction effect in lake area, the accuracy of the seven

classification methods is similar, but the accuracy is poor in

alluvial-diluvial area and mountainous area. The wetland in

lacustrine plain is typical and easy to be distinguished from

the surrounding vegetation, but the wetland in mountainous area

and the high-cover vegetation are interleaved with each other.

SVM and RF are based on pixel classification, pixels contain

multiple ground object information. The maximum likelihood

method and minimum distance method can accurately classify

these land covers purely based on Landsat spectral features.

However, pixel classification using these traditional methods is

not recommended because the classifiers lack complex spectral

discrimination for very complex features (Lu et al., 2004). We

used DISO to compare these eight methods, and the results

showed that ODTC had the best accuracy, while CART had a low

accuracy because it could not identify mountain wetlands well.

As shown in Figure 13, CART is relatively accurate in the

extraction of wetlands around the lake district and rivers, but

performs poorly in the piedmont and alpine wetlands. RF has a

good extraction effect for piedmont and alpine wetlands, but

there is a large error in the extraction of river and lake wetlands,

and the extraction range is too large. The minimum distance

method, maximum likelihood method andMahalanobis distance

method all have large errors, and overestimate wetlands. The

above methods wrongly identify alpine meadows as wetland,

while the groundwater overflow zone of piedmont alluvial

diluvial fan is identified as low vegetation cover area or bare

land. Therefore, these five classification methods are not suitable

for the plateau area. Compared with the first five methods, the

accuracy of NCC and SVM methods is relatively high, with

Kappa coefficient and OA reaching 0.82%, 88.1% and 0.84,

89.0%, respectively. However, there is still a certain amount of

misclassification and omission in the identification of alpine

wetlands, so they are also not suitable for extracting wetlands

in the HAYR.

5.2 Comparison with other wetland maps

Land use data for China and other global land cover

databases, such as ChinaCover (Mao et al., 2018a) and GLC

(Chen et al., 2015), identify and extract wetlands by estimating

land use area or use type. For example, in GLC all wetlands are

classified into one class. Despite their differences, CAS_wetlands

(Mao et al., 2020) does not separate wetlands into marsh and

flood wetlands. The former is dominated by grasses and have

high vegetation density, while the latter mainly develop in flood-

prone areas around valleys or rivers and have low vegetation

density. These issues have been addressed in this study.

FIGURE 14
Wetland maps for the headwater area of the Yellow River from different datasets (A). Landsat OLI color composite (bands 7, 5, 3) (B) GLC
wetlands. (C) CAS_wetlands. (D) Object-oriented combined with decision tree wetland extraction results (this study).
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The corresponding source regions of the Yellow River were

extracted from GLC and CAS_wetlands, and we compared with the

results of this study (Figure 14). Thewetland area of GLC is too small

and there is a certain degree of deficiency in the wetland in alpine

alpine areas and the wetland around rivers (Figure 14B). The

wetland area extracted from CAS_wetlands is exaggerated, and

large areas of high vegetation cover are incorrectly identified as

wetlands; while the wetlands on the groundwater overflow zone at

the front of the alluvial fan are not clearly identified by the product

(Figure 14C). The reason for the misclassification of wetlands is that

the specificity of high elevation cold areas was not taken into

account. In addition, CAS_wetlands did not consider topographic

and geomorphic factors and hydrogeological conditions, and

therefore wetlands were not identified in groundwater overflow

zones such as the piedmont alluvial-proluvial fan and inter-

mountain catchment basin. For this reason, CAS_wetlands was

not suitable for high-altitude wetland mapping. In order to make a

better comparison, four typical regions were selected for comparison

based on Figure 14A, as shown in Table 8.

As can be appreciated from Table 8, the approach used in this

study can accurately extract both river and lake wetlands and

piedmont wetlands. As a typical river source area, the wetlands in

HAYR are also typical alpine wetlands. Therefore, the alpine

wetland extraction method used in this study is applicable to the

whole area of the three River sources region and even QTP. This

new extraction method of alpine wetlands can improve

monitoring of alpine wetlands nationwide and should be

tested globally in future work.

6 Conclusion

In this study, a wetland classification system based on an

object-oriented method combined with decision tree and

topographic features was applied to Landsat eight OLI images

for mapping wetlands of the HAYR. This study has achieved the

most accurate and up-to-date estimation of all types of wetlands

in the HAYR. In 2020, the area of the HAYR was estimated to be

TABLE 8 Comparison of extraction results by different datasets in four regions of HAYR (Squares shown in Figure 8A).

1 2 3 4

Color composite

Global land cover

CAS_wetlands

object-oriented combined
with decision tree
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3412.3 km2, of which 45.6% was occupied by lake and river

wetlands. Among the three types of wetlands, marsh wetlands

cover an area of 1286.6 km2, accounting for 37.7% of the total

wetland area. They are distributed in the alpine catchment basin,

piedmont alluvial-proluvial fan and around the lake, and are

distributed roughly along the northwest to southeast direction,

and can be considered to have a certain relationship with the

geological structure. Despite the accurate extraction of

permanent wetlands, the results for seasonal wetlands,

rivers and lakes were not satisfactory. Due to the large

uncertainty of changes in seasonal wetlands, the method

used in this paper is not suitable for seasonal wetlands,

and the model requires more professional knowledge, the

threshold needs to be carefully determined. Considering the

need for sustainable protection and management of wetlands

in high latitude areas, future efforts will need to use higher

resolution remote sensing data to improve the classification of

seasonal wetlands.
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