56 research outputs found

    Optimal Control Strategy for Serial Supply Chain

    Get PDF

    A multipopulation parallel genetic simulated annealing based QoS routing and wavelength assignment integration algorithm for multicast in optical networks

    Get PDF
    Copyright @ 2008 Elsevier B.V. All rights reserved.In this paper, we propose an integrated Quality of Service (QoS) routing algorithm for optical networks. Given a QoS multicast request and the delay interval specified by users, the proposed algorithm can find a flexible-QoS-based cost suboptimal routing tree. The algorithm first constructs the multicast tree based on the multipopulation parallel genetic simulated annealing algorithm, and then assigns wavelengths to the tree based on the wavelength graph. In the algorithm, routing and wavelength assignment are integrated into a single process. For routing, the objective is to find a cost suboptimal multicast tree. For wavelength assignment, the objective is to minimize the delay of the multicast tree, which is achieved by minimizing the number of wavelength conversion. Thus both the cost of multicast tree and the user QoS satisfaction degree can approach the optimal. Our algorithm also considers load balance. Simulation results show that the proposed algorithm is feasible and effective. We also discuss the practical realization mechanisms of the algorithm.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant nos. 60673159 and 70671020, the National High-Tech Research and Development Plan of China under Grant no. 2006AA01Z214, Program for New Century Excellent Talents in University, and the Key Project of Chinese Ministry of Education under Grant no. 108040

    LLM-Mini-CEX: Automatic Evaluation of Large Language Model for Diagnostic Conversation

    Full text link
    There is an increasing interest in developing LLMs for medical diagnosis to improve diagnosis efficiency. Despite their alluring technological potential, there is no unified and comprehensive evaluation criterion, leading to the inability to evaluate the quality and potential risks of medical LLMs, further hindering the application of LLMs in medical treatment scenarios. Besides, current evaluations heavily rely on labor-intensive interactions with LLMs to obtain diagnostic dialogues and human evaluation on the quality of diagnosis dialogue. To tackle the lack of unified and comprehensive evaluation criterion, we first initially establish an evaluation criterion, termed LLM-specific Mini-CEX to assess the diagnostic capabilities of LLMs effectively, based on original Mini-CEX. To address the labor-intensive interaction problem, we develop a patient simulator to engage in automatic conversations with LLMs, and utilize ChatGPT for evaluating diagnosis dialogues automatically. Experimental results show that the LLM-specific Mini-CEX is adequate and necessary to evaluate medical diagnosis dialogue. Besides, ChatGPT can replace manual evaluation on the metrics of humanistic qualities and provides reproducible and automated comparisons between different LLMs

    Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules

    Get PDF
    This paper presents a fast, highly sensitive and low-cost tapered optical fiber biosensor that enables the label-free detection of biomolecules. The sensor takes advantage of the interference effect between the fiber’s first two propagation modes along the taper waist region. The biomolecules bonded on the taper surface were determined by demodulating the transmission spectrum phase shift. Because of the sharp spectrum fringe signals, as well as a relatively long biomolecule testing region, the sensor displayed a fast response and was highly sensitive. To better understand the influence of various biomolecules on the sensor, a numerical simulation that varied biolayer parameters such as thickness and refractive index was performed. The results showed that the spectrum fringe shift was obvious to be measured even when the biolayer was only nanometers thick. A microchannel chip was designed and fabricated for the protection of the sensor and biotesting. Microelectromechanical systems (MEMS) fabrication techniques were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 μm. A tapered optical fiber biosensor was fabricated and evaluated with an Immune globulin G (IgG) antibody-antigen pair

    Low-Temperature Fabrication of IZO Thin Film for Flexible Transistors

    No full text
    Solution-processed thin film transistors (TFTs) used in flexible electronics require them to be fabricated under low temperature. Ultraviolet (UV) treatment is an effective method to transform the solution precursors into dense semiconductor films. In our work, high-quality indium zinc oxide (IZO) thin films were prepared from nitrate-based precursors after UV treatment at room temperature. After UV treatment, the structure of IZO thin films was gradually rearranged, resulting in good M–O–M network formation and bonds. TFTs using IZO as a channel layer were also fabricated on Si and Polyimide (PI) substrate. The field effect mobility, threshold voltage (Vth), and subthreshold swing (SS) for rigid and flexible IZO TFTs are 14.3 and 9.5 cm2/Vs, 1.1 and 1.7 V, and 0.13 and 0.15 V/dec., respectively. This low-temperature processed route will definitely contribute to flexible electronics fabrication

    High-Performance of InGaZnO TFTs With an Ultrathin 5-nm Al₂O₃ Gate Dielectric Enabled by a Novel Atomic Layer Deposition Method

    No full text
    Al2O3, as one of the gate dielectric materials for thin film transistors (TFTs), has been extensively investigated because of its large bandgap, high breakdown field, and good thermal stability. However, the further development of Al2O3 thin films is limited by the presence of defects such as oxygen vacancies, self-interstitial atoms, or impurity elements. To overcome this obstacle, we have developed a novel method for fabricating Al2O3 thin films by using the atomic layer deposition (ALD) technique. This method replaces the conventional Trimethylaluminium (TMA)/H2O cycles with TMA/TMA/H2O/H2O cycles (referred to as ‘double cycles’), to deposit the Al2O3. The 5-nm ultrathin Al2O3 film showed a high areal capacitance of 660 nF/cm2 at 20 Hz, and a relatively low current density of 10−8 A/cm2 at 1 MV/cm. InGaZnO (IGZO) TFTs with ultrathin Al2O3 gate dielectric grown by double cycles exhibited outstanding performances, such as a near theoretical limit subthreshold swing (SS) of 70 mV/decade, a higher on/off current ratio (Ion/Ioff(I_{\mathrm{ on}} / I_{\mathrm{ off}} ) of 106, an increased field-effect mobility ( μ\mu ) of 6.5 cm2/Vs, a lower threshold voltage (Vth)(V_{\mathrm{ th}}) of 0.2 V, and a low operating voltage of 3 V. These results are superior to the IGZO TFTs with Al2O3 dielectrics deposited using the single TMA/H2O cycle. Therefore, the implementation of ‘double cycles’ in the fabrication of dielectrics through ALD demonstrates considerable potential for future application in low-power electronic devices

    A Study on Solution-Processed Y2O3 Films Modified by Atomic Layer Deposition Al2O3 as Dielectrics in ZnO Thin Film Transistor

    No full text
    In this work, Y2O3–Al2O3 dielectrics were prepared and used in ZnO thin film transistor as gate insulators. The Y2O3 film prepared by the sol–gel method has many surface defects, resulting in a high density of interface states with the active layer in TFT, which then leads to poor stability of the devices. We modified it by atomic layer deposition (ALD) technology that deposited a thin Al2O3 film on the surface of a Y2O3 dielectric layer, and finally fabricated a TFT device with ZnO as the active layer by ALD. The electrical performance and bias stability of the ZnO TFT with a Y2O3–Al2O3 laminated dielectric layer were greatly improved, the subthreshold swing was reduced from 147 to 88 mV/decade, the on/off-state current ratio was increased from 4.24 × 106 to 4.16 × 108, and the threshold voltage shift was reduced from 1.4 to 0.7 V after a 5-V gate was is applied for 800 s
    • …
    corecore