14 research outputs found
The impact of tracheotomy on levels of procalcitonin in patients without sepsis: a prospective study
OBJECTIVE:Procalcitonin is a reliable biomarker of infection and sepsis. We aimed to determine whether tracheotomy influences the procalcitonin concentrations in patients without sepsis and assess whether operative duration and procedure affect the peak procalcitonin level.METHODS:A total of 38 non-septic patients who required a tracheotomy underwent either a percutaneous dilatational tracheotomy (n=19) or a surgical tracheotomy (n=19). Procalcitonin levels were measured at the beginning of the tracheotomy and at 2 h, 4 h, 8 h, 24 h, 48 h and 72 h after the procedure.RESULTS:The baseline procalcitonin concentration before the tracheotomy was 0.24±0.13 ng/mL. The postoperative levels increased rapidly, with a 4-fold elevation after 2 h, reaching a peak 4 h later with a 5-fold increase over baseline. Thereafter, the levels gradually returned to 2-fold greater than the baseline level within 72 h. The peak levels of procalcitonin showed a significant positive correlation with operative durations (r=0.710,
A snoRNA modulates mRNA 3' end processing and regulates the expression of a subset of mRNAs.
mRNA 3' end processing is an essential step in gene expression. It is well established that canonical eukaryotic pre-mRNA 3' processing is carried out within a macromolecular machinery consisting of dozens of trans-acting proteins. However, it is unknown whether RNAs play any role in this process. Unexpectedly, we found that a subset of small nucleolar RNAs (snoRNAs) are associated with the mammalian mRNA 3' processing complex. These snoRNAs primarily interact with Fip1, a component of cleavage and polyadenylation specificity factor (CPSF). We have functionally characterized one of these snoRNAs and our results demonstrated that the U/A-rich SNORD50A inhibits mRNA 3' processing by blocking the Fip1-poly(A) site (PAS) interaction. Consistently, SNORD50A depletion altered the Fip1-RNA interaction landscape and changed the alternative polyadenylation (APA) profiles and/or transcript levels of a subset of genes. Taken together, our data revealed a novel function for snoRNAs and provided the first evidence that non-coding RNAs may play an important role in regulating mRNA 3' processing
A study on Static behavior of New Reinforced concrete column-steel beam Composite Joints
Through Experiment, we study the aseismic behavior of inserted reinforced concrete column-steel beam (RCS) composite joints. In order to design an RCS with endplate combination joint, we analyze simulation test joints on a basis of the static load test combining with finite element software ABAQUS. The numerical simulation results and the contract test results which include finite element simulation of load–displacement curve of bending moment–rotation curve and the components of yield sequence are basically the same as the experiment results. This uniformity verifies the reliability to use numerical simulation upon such problems. To compare with the ordinary reinforced concrete structures, the new type of inserted RCS composite joints is safer, and it presents a better seismic performance under the static load of the beam end. After we use numerical simulation to study the influential factors of six kinds of RCS combination of static performance including the axial compression ratio, steel insert length, the thickness of endplate, the ratio of the width of column section and beam section, the column concrete grade and four kinds of joint structure, we found that it does not only well perform on mechanical aspect but also is simple and convenient on the structure and construction of RCS composite nodes
Large energy density and high efficiency achieved simultaneously in Bi(Mg0.5Hf0.5)O3-modified NaNbO3 ceramics
A novel lead-free relaxor ferroelectric ceramics, (1-x)NaNbO3-xBi(Mg0.5Hf0.5)O3 [NN-xBMH, x  = 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25] were designed and fabricated for the first time via the standard solid-phase reaction method. The dielectric, ferroelectric, and impedance properties of the NN-xBMH ceramics were tested. Normal ferroelectrics were induced into relaxor ferroelectrics with the introduction of BMH, and the hysteresis loops became slender; This is beneficial to improve the energy storage density and efficiency of ceramic capacitors. Superior breakdown strength (370 kV/cm) is achieved in NN-0.20BMH ceramic with the recoverable energy storage density (Wrec = 3.51 J/cm3) and efficiency (η = 93.77 %). In addition, excellent frequency (1–1000 Hz) and temperature (30–120 °C) stability shows that ceramics have the actual potential in the application of ceramic capacitor. Excellent charge and discharge performances with a high power density (PD = 118 MW/cm3) and current density (CD = 990 A/cm2) along with an ultra-fast discharge rate (50 ns) were gained
Transmission of mcr-1-Producing Multidrug-resistant Enterobacteriaceae in Public Transportation in Guangzhou, China
Objectives: mcr-1-mediated colistin resistance in bacteria is concerning, as colistin is used in treating multidrug-resistant bacterial infections. And mcr-1-producing bacteria have been identified in multiple sources. Up to 248 million people use public transportation daily in China, however; public transportation hasn't been studied as a potential source of community-based transmission of mcr-1. Herein we investigated mcr-1-producing isolates from public transportation and explored the genomic characteristics of them. Methods: Surface samples were collected from public transportation in Guangzhou, China, from October 2016 to April 2017. Polymerase chain reaction was performed to detect mcr-1 gene, plasmid replicon type and phylogenetic group. Minimum inhibitory concentrations (MICs) were determined by microdilution method. S1-nuclease digestion and pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting were performed with mcr-1-harboring plasmids. Whole-genome sequencing was performed with mcr-1-producing isolates. Results: Of the 737 samples with bacterial growth, 26 isolates were positive for mcr-1, including 23 Escherichia coli and 3 Klebsiella pneumoniae isolates. The E. coli isolates belonged to phylogroups A and B1. Most mcr-1-producing isolates were resistant to ampicillin (25), cefotaxime (21), fosfomycin (16), and gentamicin (15). S1-PFGE, Southern blotting and replicon typing showed that mcr-1 was mainly located on ~33.3 kb to ~220 kb IncX4, IncI2 and IncHI2 plasmids in E. coli, while located on ~33.3 kb untyped plasmid in K. pneumoniae. Several sequence types (ST), including ST2253, ST101, ST10 complex and ST37, were revealed. Between 53 and 66 (mean = 61.8) resistance genes were identified among mcr-1-producing isolates. Conclusions: Public transportation may serve as a source of mcr-1-producing bacteria
Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits
The goat (Capra hircus) is one of the first farm animals that have undergone domestication and extensive natural and artificial selection by adapting to various environments, which in turn has resulted in its high level of phenotypic diversity. Here, we generated medium-coverage (9-13×) sequences from eight domesticated goat breeds, representing morphologically or geographically specific populations, to identify genomic regions representing selection signatures. We discovered ∼10 million single nucleotide polymorphisms (SNPs) for each breed. By combining two approaches, ZH p and di values, we identified 22 genomic regions that may have contributed to the phenotypes in coat color patterns, body size, cashmere traits, as well as high altitude adaptation in goat populations. Candidate genes underlying strong selection signatures including coloration (ASIP, KITLG, HTT, GNA11, and OSTM1), body size (TBX15, DGCR8, CDC25A, and RDH16), cashmere traits (LHX2, FGF9, and WNT2), and hypoxia adaptation (CDK2, SOCS2, NOXA1, and ENPEP) were identified. We also identified candidate functional SNPs within selected genes that may be important for each trait. Our results demonstrated the potential of using sequence data in identifying genomic regions that are responsible for agriculturally significant phenotypes in goats, which in turn can be used in the selection of goat breeds for environmental adaptation and domestication