1,240 research outputs found

    VcbV_{cb} from the semileptonic decay BDνˉB\to D \ell \bar{\nu}_{\ell} and the properties of the DD meson distribution amplitude

    Get PDF
    The improved QCD light-cone sum rule (LCSR) provides an effective way to deal with the heavy-to-light transition form factors (TFFs). Firstly, we adopt the improved LCSR approach to deal with the BDB\to D TFF f+(q2)f^{+}(q^2) up to twist-4 accuracy. Due to the elimination of the most uncertain twist-3 contribution and the large suppression of the twist-4 contribution, the obtained LCSR shall provide us a good platform for testing the DD-meson leading-twist DA. For the purpose, we suggest a new model for the DD-meson leading-twist DA (ϕ3D\phi_{3D}), whose longitudinal behavior is dominantly determined by a parameter BB. Moreover, we find its second Gegenbauer moment a2DBa^D_2\sim B. Varying BB within certain region, one can conveniently mimic the DD-meson DA behavior suggested in the literature. Inversely, by comparing the estimations with the experimental data on the DD-meson involved processes, one can get a possible range for the parameter BB and a determined behavior for the DD-meson DA. Secondly, we discuss the BDB\to D TFF at the maximum recoil region and present a detailed comparison of it with the pQCD estimation and the experimental measurements. Thirdly, by applying the LCSR on f+(q2)f^{+}(q^2), we study the CKM matrix element \Vcb together with its uncertainties by adopting two types of processes, i.e. the B0/Bˉ0B^0/\bar{B}^0-type and the B±B^{\pm}-type. It is noted that a smaller B0.20B \precsim 0.20 shows a better agreement with the experimental value on \Vcb. For example, for the case of B=0.00B=0.00, we obtain Vcb(B0/Bˉ0type)=(41.284.82+5.681.16+1.13)×103|V_{cb}|(B^0/\bar{B}^0-{\rm type})=(41.28 {^{+5.68}_{-4.82}} {^{+1.13}_{-1.16}}) \times 10^{-3} and Vcb(B±type)=(40.444.72+5.561.00+0.98)×103|V_{cb}|(B^{\pm}-{\rm type})=(40.44 {^{+5.56}_{-4.72}} {^{+0.98}_{-1.00}}) \times 10^{-3}, whose first (second) uncertainty comes from the squared average of the mentioned theoretical (experimental) uncertainties.Comment: 13 pages, 10 figures. Reference updated and discussion improved. To be published in Nucl.Phys.

    The ρ\rho-meson longitudinal leading-twist distribution amplitude

    Get PDF
    In the present paper, we suggest a convenient model for the vector ρ\rho-meson longitudinal leading-twist distribution amplitude ϕ2;ρ\phi_{2;\rho}^\|, whose distribution is controlled by a single parameter B2;ρB^\|_{2;\rho}. By choosing proper chiral current in the correlator, we obtain new light-cone sum rules (LCSR) for the BρB\to\rho TFFs A1A_1, A2A_2 and VV, in which the δ1\delta^1-order ϕ2;ρ\phi_{2;\rho}^\| provides dominant contributions. Then we make a detailed discussion on the ϕ2;ρ\phi_{2;\rho}^\| properties via those BρB\to\rho TFFs. A proper choice of B2;ρB^\|_{2;\rho} can make all the TFFs agree with the lattice QCD predictions. A prediction of Vub|V_{\rm ub}| has also been presented by using the extrapolated TFFs, which indicates that a larger B2;ρB^{\|}_{2;\rho} leads to a larger Vub|V_{\rm ub}|. To compare with the BABAR data on Vub|V_{\rm ub}|, the longitudinal leading-twist DA ϕ2;ρ\phi_{2;\rho}^\| prefers a doubly-humped behavior.Comment: 7 pages, 3 figures. Discussions improved and references updated. To be published in Phys.Lett.

    Preliminary Functional-Structural Modeling on Poplar (Salicaceae)

    Get PDF
    Poplar is one of the best fast-growing trees in the world, widely used for windbreak and wood product. Although architecture of poplar has direct impact on its applications, it has not been descried in previous poplar models, probably because of the difficulties raised by measurement, data processing and parameterization. In this paper, the functional-structural model GreenLab is calibrated by using poplar data of 3, 4, 5, 6 years old. The data was acquired by simplifying measurement. The architecture was also simplified by classifying the branches into several types (physiological age) using clustering analysis, which decrease the number of parameters. By multi-fitting the sampled data of each tree, the model parameters were identified and the plant architectures at different tree ages were simulated

    Excited Heavy Quarkonium Production at the LHC through WW-Boson Decays

    Full text link
    Sizable amount of heavy-quarkonium events can be produced through WW-boson decays at the LHC. Such channels will provide a suitable platform to study the heavy-quarkonium properties. The "improved trace technology", which disposes the amplitude M{\cal M} at the amplitude-level, is helpful for deriving compact analytical results for complex processes. As an important new application, in addition to the production of the lower-level Fock states (QQˉ)[1S]>|(Q\bar{Q'})[1S]> and (QQˉ)[1P]>|(Q\bar{Q'})[1P]>, we make a further study on the production of higher-excited (QQˉ)>|(Q\bar{Q'})>-quarkonium Fock states (QQˉ)[2S]>|(Q\bar{Q'})[2S]>, (QQˉ)[3S]>|(Q\bar{Q'})[3S]> and (QQˉ)[2P]>|(Q\bar{Q'})[2P]>. Here (QQˉ)>|(Q\bar{Q'})> stands for the (ccˉ)>|(c\bar{c})>-charmonium, (cbˉ)>|(c\bar{b})>-quarkonium and (bbˉ)>|(b\bar{b})>-bottomonium respectively. We show that sizable amount of events for those higher-excited states can also be produced at the LHC. Therefore, we need to take them into consideration for a sound estimation.Comment: 7 pages, 9 figures and 6 tables. Typo errors are corrected, more discussions and two new figures have been adde

    Degeneracy Relations in QCD and the Equivalence of Two Systematic All-Orders Methods for Setting the Renormalization Scale

    Get PDF
    The Principle of Maximum Conformality (PMC) eliminates QCD renormalization scale-setting uncertainties using fundamental renormalization group methods. The resulting scale-fixed pQCD predictions are independent of the choice of renormalization scheme and show rapid convergence. The coefficients of the scale-fixed couplings are identical to the corresponding conformal series with zero β\beta-function. Two all-orders methods for systematically implementing the PMC-scale setting procedure for existing high order calculations are discussed in this article. One implementation is based on the PMC-BLM correspondence \mbox{(PMC-I)}; the other, more recent, method \mbox{(PMC-II)} uses the Rδ{\cal R}_\delta-scheme, a systematic generalization of the minimal subtraction renormalization scheme. Both approaches satisfy all of the principles of the renormalization group and lead to scale-fixed and scheme-independent predictions at each finite order. In this work, we show that PMC-I and PMC-II scale-setting methods are in practice equivalent to each other. We illustrate this equivalence for the four-loop calculations of the annihilation ratio Re+eR_{e^+ e^-} and the Higgs partial width Γ(Hbbˉ)\Gamma(H\to b\bar{b}). Both methods lead to the same resummed (`conformal') series up to all orders. The small scale differences between the two approaches are reduced as additional renormalization group {βi}\{\beta_i\}-terms in the pQCD expansion are taken into account. We also show that {\it special degeneracy relations}, which underly the equivalence of the two PMC approaches and the resulting conformal features of the pQCD series, are in fact general properties of non-Abelian gauge theory.Comment: 7 pages, 1 figur
    corecore