1,618 research outputs found

    NNLO QCD Corrections to t-channel Single Top-Quark Production and Decay

    Get PDF
    We present a fully differential next-to-next-to-leading order calculation of t-channel single top-quark production and decay at the LHC under narrow-width approximation and neglecting cross-talk between incoming protons. We focus on the fiducial cross sections at 13 TeV, finding that the next-to-next-to-leading order QCD corrections can reach the level of -6%. The scale variations are reduced to the level of a percent. Our results can be used to improve experimental acceptance estimates and the measurements of the single top-quark production cross section and the top-quark electroweak couplings.Comment: 6 pages, 4 figures, version appear on PRD rapid communicatio

    Pure spin current in a two-dimensional topological insulator

    Full text link
    We predict a mechanism to generate a pure spin current in a two-dimensional topological insulator. As the magnetic impurities exist on one of edges of the two-dimensional topological insulator, a gap is opened in the corresponding gapless edge states but another pair of gapless edge states with opposite spin are still protected by the time-reversal symmetry. So the conductance plateaus with the half-integer values e2/he^2/h can be obtained in the gap induced by magnetic impurities, which means that the pure spin current can be induced in the sample. We also find that the pure spin current is insensitive to weak disorder. The mechanism to generate pure spin currents is generalized for two-dimensional topological insulators.Comment: 5 pages, 6 figure

    (Z)3,4,5,4'-trans-tetramethoxystilbene, a new analogue of resveratrol, inhibits gefitinb-resistant non-small cell lung cancer via selectively elevating intracellular calcium level.

    Get PDF
    Calcium is a second messenger which is required for regulation of many cellular processes. However, excessive elevation or prolonged activation of calcium signaling would lead to cell death. As such, selectively regulating calcium signaling could be an alternative approach for anti-cancer therapy. Recently, we have identified an effective analogue of resveratrol, (Z)3,4,5,4′-trans-tetramethoxystilbene (TMS) which selectively elevated the intracellular calcium level in gefitinib-resistant (G-R) non-small-cell lung cancer (NSCLC) cells. TMS exhibited significant inhibitory effect on G-R NSCLC cells, but not other NSCLC cells and normal lung epithelial cells. The phosphorylation and activation of EGFR were inhibited by TMS in G-R cells. TMS induced caspase-independent apoptosis and autophagy by directly binding to SERCA and causing endoplasmic reticulum (ER) stress and AMPK activation. Proteomics analysis also further confirmed that mTOR pathway, which is the downstream of AMPK, was significantly suppressed by TMS. JNK, the cross-linker of ER stress and mTOR pathway was significantly activated by TMS. In addition, the inhibition of JNK activation can partially block the effect of TMS. Taken together, TMS showed promising anti-cancer activity by mediating calcium signaling pathway and inducing apoptosis as well as autophagy in G-R NSCLC cells, providing strategy in designing multi-targeting drug for treating G-R patients

    Correlations in Two-Dimensional Vortex Liquids

    Full text link
    We report on a high temperature perturbation expansion study of the superfluid-density spatial correlation function of a Ginzburg-Landau-model superconducting film in a magnetic field. We have derived a closed form which expresses the contribution to the correlation function from each graph of the perturbation theory in terms of the number of Euler paths around appropriate subgraphs. We have enumerated all graphs appearing out to 10-th order in the expansion and have evaluated their contributions to the correlation function. Low temperature correlation functions, obtained using Pad\'{e} approximants, are in good agreement with Monte Carlo simulation results and show that the vortex-liquid becomes strongly correlated at temperatures well above the vortex solidification temperature.Comment: 18 pages (RevTeX 3.0) and 4 figures, available upon request, IUCM93-01

    Two-Dimensional Vortex Lattice Melting

    Full text link
    We report on a Monte-Carlo study of two-dimensional Ginzburg-Landau superconductors in a magnetic field which finds clear evidence for a first-order phase transition characterized by broken translational symmetry of the superfluid density. A key aspect of our study is the introduction of a quantity proportional to the Fourier transform of the superfluid density which can be sampled efficiently in Landau gauge Monte-Carlo simulations and which satisfies a useful sum rule. We estimate the latent heat per vortex of the melting transition to be ∼0.38kBTM\sim 0.38 k_B T_M where TMT_M is the melting temperature.Comment: 10 pages (4 figures available on request), RevTex 3.0, IUCM93-00

    Big, Fast Vortices in the d-RVB theory of High Temperature Superconductivity

    Full text link
    The effect of proximity to a Mott insulating phase on the superflow properties of a d-wave superconductor is studied using the slave boson-U(1) gauge theory model. The model has two limits corresponding to superconductivity emerging either out of a 'renormalized fermi liquid' or out of a non-fermi-liquid regime. Three crucial physical parameters are identified: the size of the vortex \textit{as determined from the supercurrent it induces;} the coupling of the superflow to the quasiparticles and the 'nondissipative time derivative' term. As the Mott phase is approached, the core size as defined from the supercurrent diverges, the coupling between superflow and quasiparticles vanishes, and the magnitude of the nondissipative time derivative dramatically increases. The dissipation due to a moving vortex is found to vary as the third power of the doping. The upper critical field and the size of the critical regime in which paraconductivity may be observed are estimated, and found to be controlled by the supercurrent length scale

    Role of p85α in neutrophil extra- and intracellular reactive oxygen species generation

    Get PDF
    Drug resistance is a growing problem that necessitates new strategies to combat pathogens. Neutrophil phagocytosis and production of intracellular ROS, in particular, has been shown to cooperate with antibiotics in the killing of microbes. This study tested the hypothesis that p85α, the regulatory subunit of PI3K, regulates production of intracellular ROS. Genetic knockout of p85α in mice caused decreased expression of catalytic subunits p110α, p110β, and p110δ, but did not change expression levels of the NADPH oxidase complex subunits p67phox, p47phox, and p40phox. When p85α, p55α, and p50α (all encoded by Pik3r1) were deleted, there was an increase in intracellular ROS with no change in phagocytosis in response to both Fcγ receptor and complement receptor stimulation. Furthermore, the increased intracellular ROS correlated with significantly improved neutrophil killing of both methicillin-susceptible and methicillin-resistant S. aureus. Our findings suggest inhibition of p85α as novel approach to improving the clearance of resistant pathogens
    • …
    corecore